Insights into visual working memory precision at the feature- and object-level from a hemispheric encoding manipulation

2020 ◽  
Vol 73 (11) ◽  
pp. 1949-1968
Author(s):  
Elena M Galeano Weber ◽  
Haley Keglovits ◽  
Arin Fisher ◽  
Silvia A Bunge

Mnemonic precision is an important aspect of visual working memory (WM). Here, we probed mechanisms that affect precision for spatial (size) and non-spatial (colour) features of an object, and whether these features are encoded and/or stored separately in WM. We probed precision at the feature-level—that is, whether different features of a single object are represented separately or together in WM—and the object-level—that is, whether different features across a set of sequentially presented objects are represented in the same or different WM stores. By manipulating whether stimuli were encoded by the left and/or right hemisphere, we gained further insights into how objects are represented in WM. At the feature-level, we tested whether recall fidelity for the two features of an object fluctuated in tandem from trial to trial. We observed no significant coupling under either central or lateralized encoding, supporting the claim of parallel feature channels at encoding. At the level of WM storage of a set of objects, we found asymmetric feature interference under central encoding, whereby an increase in colour load led to a decrease in size precision. When objects were encoded by a single hemisphere, however, we found largely independent feature stores. Precision for size was more resistant to interference from the size of another object under right-hemisphere encoding; by contrast, precision for colour did not differ across hemispheres, suggesting a more distributed WM store. These findings suggest that distinct features of a single object are represented separately but are then partially integrated during maintenance of a set of sequentially presented objects.

Author(s):  
Selma Lugtmeijer ◽  
◽  
Linda Geerligs ◽  
Frank Erik de Leeuw ◽  
Edward H. F. de Haan ◽  
...  

AbstractWorking memory and episodic memory are two different processes, although the nature of their interrelationship is debated. As these processes are predominantly studied in isolation, it is unclear whether they crucially rely on different neural substrates. To obtain more insight in this, 81 adults with sub-acute ischemic stroke and 29 elderly controls were assessed on a visual working memory task, followed by a surprise subsequent memory test for the same stimuli. Multivariate, atlas- and track-based lesion-symptom mapping (LSM) analyses were performed to identify anatomical correlates of visual memory. Behavioral results gave moderate evidence for independence between discriminability in working memory and subsequent memory, and strong evidence for a correlation in response bias on the two tasks in stroke patients. LSM analyses suggested there might be independent regions associated with working memory and episodic memory. Lesions in the right arcuate fasciculus were more strongly associated with discriminability in working memory than in subsequent memory, while lesions in the frontal operculum in the right hemisphere were more strongly associated with criterion setting in subsequent memory. These findings support the view that some processes involved in working memory and episodic memory rely on separate mechanisms, while acknowledging that there might also be shared processes.


2015 ◽  
Vol 15 (12) ◽  
pp. 534
Author(s):  
Jiajie Cai ◽  
Yongna Li ◽  
Guixia Ma ◽  
Xiaotong Wen

2018 ◽  
Author(s):  
Yi-Jie Zhao ◽  
Tianye Ma ◽  
Xuemei Ran ◽  
Li Zhang ◽  
Ru-Yuan Zhang ◽  
...  

AbstractSchizophrenia patients are known to have profound deficits in visual working memory (VWM), and almost all previous studies attribute the deficits to decreased memory capacity. This account, however, ignores the potential contributions of other VWM components (e.g., memory precision). Here, we measure the VWM performance of schizophrenia patients and healthy control subjects on two classical delay-estimation tasks. Moreover, we thoroughly evaluate several established computational models of VWM to compare the performance of the two groups. We find that the model assuming variable precision across items and trials is the best model to explain the performance of both groups. According to the variable-precision model, schizophrenia subjects exhibit abnormally larger variability of allocating memory resources rather than resources per se. These results invite a rethink of the widely accepted decreased-capacity theory and propose a new perspective on the diagnosis and rehabilitation of schizophrenia.


Vision ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 59
Author(s):  
Adam Reeves ◽  
Jiehui Qian

We review research on the visual working memory for information portrayed by items arranged in depth (i.e., distance to the observer) within peri-personal space. Most items lose their metric depths within half a second, even though their identities and spatial positions are retained. The paradoxical loss of depth information may arise because visual working memory retains the depth of a single object for the purpose of actions such as pointing or grasping which usually apply to only one thing at a time.


2013 ◽  
Vol 13 (9) ◽  
pp. 1360-1360
Author(s):  
D. W. Sutterer ◽  
D. E. Anderson ◽  
E. Awh

2012 ◽  
Vol 12 (9) ◽  
pp. 350-350 ◽  
Author(s):  
N. Zokaei ◽  
N. Gorgoraptis ◽  
M. Husain

Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2106
Author(s):  
Yair Pinto ◽  
Edward H.F. de Haan ◽  
Maria-Chiara Villa ◽  
Sabrina Siliquini ◽  
Gabriele Polonara ◽  
...  

One of the most fundamental, and most studied, human cognitive functions is working memory. Yet, it is currently unknown how working memory is unified. In other words, why does a healthy human brain have one integrated capacity of working memory, rather than one capacity per visual hemifield, for instance. Thus, healthy subjects can memorize roughly as many items, regardless of whether all items are presented in one hemifield, rather than throughout two visual hemifields. In this current research, we investigated two patients in whom either most, or the entire, corpus callosum has been cut to alleviate otherwise untreatable epilepsy. Crucially, in both patients the anterior parts connecting the frontal and most of the parietal cortices, are entirely removed. This is essential, since it is often posited that working memory resides in these areas of the cortex. We found that despite the lack of direct connections between the frontal cortices in these patients, working memory capacity is similar regardless of whether stimuli are all presented in one visual hemifield or across two visual hemifields. This indicates that in the absence of the anterior parts of the corpus callosum working memory remains unified. Moreover, it is important to note that memory performance was not similar across visual fields. In fact, capacity was higher when items appeared in the left visual hemifield than when they appeared in the right visual hemifield. Visual information in the left hemifield is processed by the right hemisphere and vice versa. Therefore, this indicates that visual working memory is not symmetric, with the right hemisphere having a superior visual working memory. Nonetheless, a (subcortical) bottleneck apparently causes visual working memory to be integrated, such that capacity does not increase when items are presented in two, rather than one, visual hemifield.


2018 ◽  
Vol 193 ◽  
pp. 91-97 ◽  
Author(s):  
Weizhen Xie ◽  
Marcus Cappiello ◽  
Hyung-Bum Park ◽  
Patricia Deldin ◽  
Raymond C.K. Chan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document