scholarly journals A practical synthesis of 3-chloro-2,4-difluoro-5-hydroxybenzoic acid

2020 ◽  
pp. 174751982093225
Author(s):  
Mingguang Zhang ◽  
Zhongbao Bi ◽  
Yunyun Wang ◽  
Yuxun Zhao ◽  
Yang Yang ◽  
...  

A new and practical synthesis of 3-chloro-2,4-difluoro-5-hydroxybenzoic acid, a key intermediate for preparing antimicrobial 3-quinolinecarboxylic acid drugs, is synthesized from 2,4-difluoro-3-chlororobenzoic acid. The protocol involves nitration, esterification, reduction of NO2, diazotization, and hydrolysis with a 70% overall yield. The structures of the synthesized compounds are determined by infrared spectroscopy, nuclear magnetic resonance spectroscopy, and high-resolution electrospray ionization mass spectrometry. The advantages of this developed synthetic strategy include an improved overall yield and readily controllable reaction conditions.

2020 ◽  
Vol 44 (5-6) ◽  
pp. 322-325
Author(s):  
Lie-Feng Ma ◽  
Yue Zhang ◽  
Xuan Zhang ◽  
Meng-Jia Chen ◽  
Zha-Jun Zhan ◽  
...  

Eupholathone, a minor diterpenoid with an unusual tetracyclic skeleton, was obtained from the seeds of Euphorbia lathyris, along with two known lathyrane diterpenoids, euphorbia factors L2 and L3. The structure of eupholathone was elucidated by detailed interpretation of its spectroscopic data, especially two-dimensional nuclear magnetic resonance spectroscopy and high-resolution electrospray ionization mass spectrometry.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hui Shao ◽  
Wenmin Huang ◽  
Luisana Avilan ◽  
Véronique Receveur-Bréchot ◽  
Carine Puppo ◽  
...  

Abstract Background CP12 is a small chloroplast protein that is widespread in various photosynthetic organisms and is an actor of the redox signaling pathway involved in the regulation of the Calvin Benson Bassham (CBB) cycle. The gene encoding this protein is conserved in many diatoms, but the protein has been overlooked in these organisms, despite their ecological importance and their complex and still enigmatic evolutionary background. Methods A combination of biochemical, bioinformatics and biophysical methods including electrospray ionization-mass spectrometry, circular dichroism, nuclear magnetic resonance spectroscopy and small X ray scattering, was used to characterize a diatom CP12. Results Here, we demonstrate that CP12 is expressed in the marine diatom Thalassiosira pseudonana constitutively in dark-treated and in continuous light-treated cells as well as in all growth phases. This CP12 similarly to its homologues in other species has some features of intrinsically disorder protein family: it behaves abnormally under gel electrophoresis and size exclusion chromatography, has a high net charge and a bias amino acid composition. By contrast, unlike other known CP12 proteins that are monomers, this protein is a dimer as suggested by native electrospray ionization-mass spectrometry and small angle X-ray scattering. In addition, small angle X-ray scattering revealed that this CP12 is an elongated cylinder with kinks. Circular dichroism spectra indicated that CP12 has a high content of α-helices, and nuclear magnetic resonance spectroscopy suggested that these helices are unstable and dynamic within a millisecond timescale. Together with in silico predictions, these results suggest that T. pseudonana CP12 has both coiled coil and disordered regions. Conclusions These findings bring new insights into the large family of dynamic proteins containing disordered regions, thus increasing the diversity of known CP12 proteins. As it is a protein that is more abundant in many stresses, it is not devoted to one metabolism and in particular, it is not specific to carbon metabolism. This raises questions about the role of this protein in addition to the well-established regulation of the CBB cycle. Choregraphy of metabolism by CP12 proteins in Viridiplantae and Heterokonta. While the monomeric CP12 in Viridiplantae is involved in carbon assimilation, regulating phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) through the formation of a ternary complex, in Heterokonta studied so far, the dimeric CP12 is associated with Ferredoxin-NADP reductase (FNR) and GAPDH. The Viridiplantae CP12 can bind metal ions and can be a chaperone, the Heterokonta CP12 is more abundant in all stresses (C, N, Si, P limited conditions) and is not specific to a metabolism.


Molbank ◽  
10.3390/m1255 ◽  
2021 ◽  
Vol 2021 (3) ◽  
pp. M1255
Author(s):  
Atsushi Miyagawa ◽  
Shinya Ohno ◽  
Hatsuo Yamamura

Glycosyl monomers for the assembly of multivalent ligands are typically synthesized using carbohydrates with biological functions and polymerizable functional groups such as acrylamide or styrene introduced into the carbohydrate aglycon, and monomers polymerized using a radical initiator. Herein, we report the acryloylation of 6-aminohexyl α-mannoside and its conversion into the glycosyl monomer bearing an acrylamide group. The general acryloylation procedure afforded the desired N-hexyl acetylmannosyl acrylamide monomer as well as an unexpected compound with a close Rf value. The compounds were separated and analyzed by nuclear magnetic resonance spectroscopy and mass spectrometry, which revealed the unknown compound to be the bivalent N,N-bis(hexyl α-d-acetylmannosyl) acrylamide monomer, which contains two hexyl mannose units and one acrylamide group. To the best of our knowledge, this side reaction has not previously been disclosed, and may be useful for the construction of multivalent sugar ligands.


Sign in / Sign up

Export Citation Format

Share Document