scholarly journals Modeling of smart magnetically affected flexoelectric/piezoelectric nanostructures incorporating surface effects

2017 ◽  
Vol 7 ◽  
pp. 184798041771310 ◽  
Author(s):  
Farzad Ebrahimi ◽  
Mohammad Reza Barati

In this article, electromechanical buckling behavior of size-dependent flexoelectric/piezoelectric nanobeams is investigated based on nonlocal and surface elasticity theories. Flexoelectricity represents the coupling between the strain gradients and electrical polarizations. Flexoelectric/piezoelectric nanostructures can tolerate higher buckling loads compared with conventional piezoelectric ones, especially at lower thicknesses. Nonlocal elasticity theory of Eringen is applied for analyzing flexoelectric/piezoelectric nanobeams for the first time. The flexoelectric/piezoelectric nanobeams are assumed to be in contact with a two-parameter elastic foundation which consists of infinite linear springs and a shear layer. The residual surface stresses which are usually neglected in modeling of flexoelectric nanobeams are incorporated into nonlocal elasticity to provide better understanding of the physics of the problem. Applying an analytical method which satisfies various boundary conditions, the governing equations obtained from Hamilton’s principle are solved. The reliability of the present approach is verified by comparing the obtained results with those provided in literature. Finally, the influences of nonlocal parameter, surface effects plate geometrical parameters, elastic foundation, and boundary conditions on the buckling characteristics of the flexoelectric/piezoelectric nanobeams are explored in detail.

Author(s):  
Jianshi Fang ◽  
Bo Yin ◽  
Xiaopeng Zhang ◽  
Bin Yang

The free vibration of rotating functionally graded nanobeams under different boundary conditions is studied based on nonlocal elasticity theory within the framework of Euler-Bernoulli and Timoshenko beam theories. The thickness-wise material gradient variation of the nanobeam is considered. By introducing a second-order axial shortening term into the displacement field, the governing equations of motion of the present new nonlocal model of rotating nanobeams are derived by the Hamilton’s principle. The nonlocal differential equations are solved through the Galerkin method. The present nonlocal models are validated through the convergence and comparison studies. Numerical results are presented to investigate the influences of the nonlocal parameter, angular velocity, material gradient variation together with slenderness ratio on the vibration of rotating FG nanobeams with different boundary conditions. Totally different from stationary nanobeams, the rotating nanobeams with relatively high angular velocity could produce larger fundamental frequencies than local counterparts. Additionally, the axial stretching-transverse bending coupled vibration is perfectly shown through the frequency loci veering and modal conversion.


2015 ◽  
Vol 07 (03) ◽  
pp. 1550036 ◽  
Author(s):  
Omid Rahmani ◽  
S. A. H. Hosseini ◽  
M. H. Noroozi Moghaddam ◽  
I. Fakhari Golpayegani

In this paper, the torsional vibration of cracked nanobeam was studied based on a nonlocal elasticity theory. The location of the crack is simulated by a torsional spring which links segments of nanobeam together. Also, different boundary conditions, including clamped–free, clamped–clamped and clamped–torsional spring, were considered. Furthermore, a detailed parametric study was conducted to investigate the influence of crack location, nonlocal parameter, length of nanobeam, spring constant and end supports on the torsional vibration.


2014 ◽  
Vol 30 (5) ◽  
pp. 443-453 ◽  
Author(s):  
M. Sobhy

AbstractIn this article, the analyses of the natural frequency and buckling of orthotopic nanoplates, such as single-layered graphene sheets, resting on Pasternak's elastic foundations with various boundary conditions are presented. New functions for midplane displacements are suggested to satisfy the different boundary conditions. These functions are examined by comparing their results with the results obtained by using the functions suggested by Reddy (Reddy JN. Mechanics of Composite Materials and Structures: Theory and Analysis. Boca Raton, FL: CRC Press; 1997). Moreover, these functions are very simple comparing with Reddy's functions, leading to ease of calculations. The equations of motion of the nonlocal model are derived using the sinusoidal shear deformation plate theory (SPT) in conjunction with the nonlocal elasticity theory. The present SPT are compared with other plate theories. Explicit solution for buckling loads and vibration are obtained for single-layered graphene sheets with isotropic and orthotropic properties; and under biaxial loads. The formulation and the method of the solution are firstly validated by executing the comparison studies for the isotropic nanoplates with the results being in literature. Then, the influences of nonlocal parameter and the other parameters on the buckling and vibration frequencies are investigated.


2020 ◽  
Vol 34 (11) ◽  
pp. 2050103
Author(s):  
Yuanyuan Zhang ◽  
Huoming Shen ◽  
Yuxing Wang ◽  
Xin Zhang

This paper investigates the size-dependent nonlinear bending of functionally graded carbon nanotube-reinforced (FG-CNTR) nanobeams. Chen–Yao’s surface elasticity and modified couple stress theories are adopted to describe surface effects and couple stress effects, respectively. These nanobeams, in which the carbon nanotube (CNT)-reinforced phases are assumed to be distributed in a gradient along the thickness, are subjected to a uniform pressure and rest on a nonlinear elastic foundation. In accordance with the Euler–Lagrange variational principle, the governing equations and boundary conditions for the FG-CNTR nanobeams, which involve geometric nonlinearity due to the von Kármán strain relations, are obtained. Then, with the assistance of the two-step perturbation technique, the load-deflection relationship is determined for nanobeams subjected to simply supported (SS) and clamped–clamped (CC) boundary conditions. Finally, the impacts of various factors, including surface properties, characteristic material length, elastic foundation, geometric factors, layout type and volume fraction of CNTs, on the mechanical behaviors of CNT-based nanobeams are examined. The numerical results reveal that the combination of surface effects and couple stress helps to enhanceq the stiffness of the nanobeams. Furthermore, the size-dependent nonlinear bending of the FG-CNTR nanobeam is markedly affected by the content and layout type of the reinforcements.


2016 ◽  
Vol 16 (06) ◽  
pp. 1550023 ◽  
Author(s):  
Farzad Ebrahimi ◽  
Gholam Reza Shaghaghi ◽  
Mahya Boreiry

In the present paper, the vibrational and buckling characteristics of nanotubes with various boundary conditions are investigated considering the coupled effects of nonlocal elasticity and surface effects, including surface elasticity and surface tension. The nonlocal Eringen theory is adopted to consider the effect of small scale size, and the Gurtin–Murdoch model the surface effect. Hamilton’s principle is employed to formulate the governing equation and differential transformation method (DTM) is utilized to obtain the natural frequency and critical buckling load of nanotubes with various boundary conditions. The results obtained match the available ones in the literature. Detailed mathematical derivations are presented and numerical investigations are performed. The emphasis is placed on the effects of several parameters, such as the nonlocal parameter, surface effect, aspect ratio, mode number and beam size, on the normalized natural frequencies and critical buckling loads of the nanotube. It is explicitly shown that the vibration and buckling of a nanotube is significantly influenced by these effects. Numerical results are presented which may serve as benchmarks for future analysis of nanotubes.


2017 ◽  
Vol 17 (01) ◽  
pp. 1750014 ◽  
Author(s):  
R. Ansari ◽  
R. Gholami

This paper presents a nonlocal nonlinear first-order shear deformable plate model for investigating the buckling and postbuckling of magneto-electro-thermo elastic (METE) nanoplates under magneto-electro-thermo-mechanical loadings. The nonlocal elasticity theory within the framework of the first-order shear deformation plate theory along with the von Kármán-type geometrical nonlinearity is used to derive the size-dependent nonlinear governing partial differential equations and associated boundary conditions, in which the effects of shear deformation, small scale parameter and thermo-electro-magneto-mechanical loadings are incorporated. The generalized differential quadrature (GDQ) method and pseudo arc-length continuation algorithm are used to determine the critical buckling loads and postbuckling equilibrium paths of the METE nanoplates with various boundary conditions. Finally, the influences of the nonlocal parameter, boundary conditions, temperature rise, external electric voltage and external magnetic potential on the critical buckling load and postbuckling response are studied.


2016 ◽  
Vol 21 (6) ◽  
pp. 852-868 ◽  
Author(s):  
Ashraf M. Zenkour

The torsional dynamics of carbon nanotubes embedded in viscoelastic medium are presented by using the nonlocal elasticity theory. The medium is considered as a foundation model which characterized by the linear Winkler’s modulus, Pasternak’s (shear) foundation modulus and the damping coefficient. The governing torsional equation is obtained and solved for nanotubes subjected to various boundary conditions and stated under different loads. The effects of some parameters like nonlocal parameter, nanotube length, Winkler’s modulus, and damping coefficient on the angular displacement of the nanotube are investigated in detail. The angular displacements are very sensitive to all parameters, especially the inclusion of the viscous damping foundation. Present results can be useful in design of future nano composites, nano electromechanical systems like nano position sensors and linear servomotors. Sample angular displacements are tabulated and plotted for sensing the effect of all used parameters and to investigate the visco-Pasternak’s parameters for future comparisons.


Sign in / Sign up

Export Citation Format

Share Document