Combined effects of surface energy and couple stress on the nonlinear bending of FG-CNTR nanobeams

2020 ◽  
Vol 34 (11) ◽  
pp. 2050103
Author(s):  
Yuanyuan Zhang ◽  
Huoming Shen ◽  
Yuxing Wang ◽  
Xin Zhang

This paper investigates the size-dependent nonlinear bending of functionally graded carbon nanotube-reinforced (FG-CNTR) nanobeams. Chen–Yao’s surface elasticity and modified couple stress theories are adopted to describe surface effects and couple stress effects, respectively. These nanobeams, in which the carbon nanotube (CNT)-reinforced phases are assumed to be distributed in a gradient along the thickness, are subjected to a uniform pressure and rest on a nonlinear elastic foundation. In accordance with the Euler–Lagrange variational principle, the governing equations and boundary conditions for the FG-CNTR nanobeams, which involve geometric nonlinearity due to the von Kármán strain relations, are obtained. Then, with the assistance of the two-step perturbation technique, the load-deflection relationship is determined for nanobeams subjected to simply supported (SS) and clamped–clamped (CC) boundary conditions. Finally, the impacts of various factors, including surface properties, characteristic material length, elastic foundation, geometric factors, layout type and volume fraction of CNTs, on the mechanical behaviors of CNT-based nanobeams are examined. The numerical results reveal that the combination of surface effects and couple stress helps to enhanceq the stiffness of the nanobeams. Furthermore, the size-dependent nonlinear bending of the FG-CNTR nanobeam is markedly affected by the content and layout type of the reinforcements.

2017 ◽  
Vol 7 ◽  
pp. 184798041771310 ◽  
Author(s):  
Farzad Ebrahimi ◽  
Mohammad Reza Barati

In this article, electromechanical buckling behavior of size-dependent flexoelectric/piezoelectric nanobeams is investigated based on nonlocal and surface elasticity theories. Flexoelectricity represents the coupling between the strain gradients and electrical polarizations. Flexoelectric/piezoelectric nanostructures can tolerate higher buckling loads compared with conventional piezoelectric ones, especially at lower thicknesses. Nonlocal elasticity theory of Eringen is applied for analyzing flexoelectric/piezoelectric nanobeams for the first time. The flexoelectric/piezoelectric nanobeams are assumed to be in contact with a two-parameter elastic foundation which consists of infinite linear springs and a shear layer. The residual surface stresses which are usually neglected in modeling of flexoelectric nanobeams are incorporated into nonlocal elasticity to provide better understanding of the physics of the problem. Applying an analytical method which satisfies various boundary conditions, the governing equations obtained from Hamilton’s principle are solved. The reliability of the present approach is verified by comparing the obtained results with those provided in literature. Finally, the influences of nonlocal parameter, surface effects plate geometrical parameters, elastic foundation, and boundary conditions on the buckling characteristics of the flexoelectric/piezoelectric nanobeams are explored in detail.


2017 ◽  
Vol 24 (11) ◽  
pp. 2327-2343 ◽  
Author(s):  
Rasool Moradi-Dastjerdi ◽  
Hamed Momeni-Khabisi

In this paper, free and forced vibrations, and also resonance and pulse phenomena in sandwich plates with an isotropic core and composite reinforced by wavy carbon nanotube (CNT) face sheets are studied based on a mesh-free method and first order shear deformation theory (FSDT). The sandwich plates are resting on Pasternak elastic foundation and subjected to periodic loads. In the mesh-free analysis, moving least squares (MLS) shape functions are used for approximation of displacement field in the weak form of motion equation and the transformation method is used for imposition of essential boundary conditions. The distributions of CNTs are considered functionally graded (FG) or uniform along the thickness and their mechanical properties are estimated by an extended rule of mixture. Effects of CNT distribution, volume fraction, aspect ratio and waviness, and also effects of Pasternak’s elastic foundation coefficients, sandwich plate thickness, face sheets thickness, plate aspect ratio and time depended force are investigated on the free and forced vibrations, and resonance behavior of the sandwich plates with wavy CNT-reinforced face sheets.


Author(s):  
Farzad Ebrahimi ◽  
Fateme Mahmoodi

In this paper, buckling behavior of a higher order functionally graded microbeam with porosities is investigated based on the modified couple stress theory and the exact position of the neutral axis. Porosities are evenly and unevenly distributed inside the functionally graded microbeam. Material properties of the functionally graded microbeam are assumed to vary in the thickness direction through a modified form of power-law distribution in which the volume fraction of porosities is considered. The governing equations are derived by using Hamilton's principle and an analytical method is employed to solve these equations for various boundary conditions. The present formulation and numerical results demonstrate a good agreement with some available cases in the literature. Influences of several important parameters such as power-law exponent, porosity distributions, porosity volume fraction, slenderness ratio, and various boundary conditions on buckling loads of porous functionally graded microbeams are investigated and discussed in detail.


2019 ◽  
Vol 19 (03) ◽  
pp. 1950028 ◽  
Author(s):  
S. J. Singh ◽  
S. P. Harsha

In the present study, free vibration and buckling characteristics of a sandwich functionally graded material (FGM) plate resting on the Pasternak elastic foundation have been investigated. The formulation is based on non-polynomial higher-order shear deformation theory with inverse hyperbolic shape function. A new modified sigmoid law is presented to compute the effective material properties of sandwich FGM plate. The governing equilibrium equations have been derived using Hamilton’s principle. Non-dimensional frequencies and critical buckling loads are evaluated by considering different boundary conditions based on admissible functions satisfying the desired primary and secondary variables. Comprehensive parametric studies have been performed to analyze the influence of geometric configuration, volume fraction exponent, elastic medium parameter, and non-dimensional load parameter on the non-dimensional frequency and critical buckling load. These parametric studies have been done for various boundary conditions and different configurations of the sandwich plate. The computed results can be used as a benchmark for future comparison of sandwich S-FGM plates.


2019 ◽  
Vol 19 (11) ◽  
pp. 1950127 ◽  
Author(s):  
Mohamed A. Attia ◽  
Rabab A. Shanab ◽  
Salwa A. Mohamed ◽  
Norhan A. Mohamed

An integrated nonlinear couple stress-surface energy continuum model is developed to study the nonlinear vibration characteristics of size-dependent functionally graded nanobeams for the first time. The nanobeam theory is formulated based on the Timoshenko kinematics, augmented by von Kármán’s geometric nonlinearity. The modified couple stress and Gurtin–Murdoch surface elasticity theories are incorporated to capture the long-range interaction and surface energy, respectively. Unlike existing Timoshenko nanobeam models, the effects of surface elasticity, residual surface stress, surface mass density and Poisson’s ratio, in addition to bending and axial deformations, are incorporated in the newly developed model. A power law function is used to model the material distribution through the thickness of the beam, considering the gradation of bulk and surface material parameters. A variational formulation of the nonlinear nonclassical governing equations and associated nonclassical boundary conditions is established by employing Hamilton’s principle. The generalized differential quadrature method is exploited in conjunction with either the Pseudo-arclength continuation or Runge–Kutta method to solve the problem with an exact implementation of the nonclassical boundary conditions. The formulation and solution procedure presented are verified by comparing the obtained results with available ones. Based on the parametric study, it is concluded that the nonclassical boundary conditions, material length scale parameter, residual surface stress, surface elasticity, bulk elasticity modulus, gradient index, nonlinear amplitude and thickness have important influences on the linear and nonlinear vibration responses of functionally graded Timoshenko nanobeams.


2017 ◽  
Vol 22 (2) ◽  
pp. 156-189 ◽  
Author(s):  
Prapot Tossapanon ◽  
Nuttawit Wattanasakulpong

This paper aims to present accurate solutions for flexural vibration of functionally graded sandwich plates resting on two-parameter elastic foundation with any combined boundary conditions. The governing equations of free vibration problem are derived from the first-order shear deformation theory that covers the important effects of shear deformation and rotary inertia. To solve the coupled differential equations governing vibration behavior of the plates with various boundary conditions, an effective tool, namely Chebyshev collocation method, is implemented to obtain the accurate solutions with several parametric studies. The influences of material volume fraction index, layer thickness ratio, side-to-height ratio, boundary conditions, etc., on natural frequencies of the plates are taken into investigation and discussed in details. Our numerical experiments reveal that the proposed method can offer the accurate frequency results of the plates as compared to those available in the literature. Additionally, the spring constants of elastic foundation have a significant impact on frequency changes of the plates. Increasing the values of spring constants leads to considerable increases of the frequencies.


2017 ◽  
Vol 22 (2) ◽  
pp. 220-247 ◽  
Author(s):  
Nuttawit Wattanasakulpong ◽  
Arisara Chaikittiratana ◽  
Sacharuck Pornpeerakeat

This paper investigates flexural vibration of functionally graded sandwich microbeams supported by different axially immovable boundary conditions. The governing equations of free vibration problem are based on Timoshenko beam theory and the modified couple stress theory which are taking into account the important effects of shear deformation, rotary inertia and material length scale parameter. To solve the governing equations presented in the forms of coupled differential equations for vibration analysis of the beams with various boundary conditions, an effective tool, namely Chebyshev collocation method, is employed to find out accurate solutions with many important parametric studies. The effects of material volume fraction index, layer thickness ratio, slenderness ratio, boundary condition, temperature rise, etc. on natural frequencies of the beams are taken into account and discussed in details. The numerical results of the beams in ambient temperature and high thermal environment are presented in several tables and figures that can serve as benchmarks for further investigations in the field of FG sandwich microbeam analysis.


Author(s):  
Nastaran Shahmansouri ◽  
Mohammad Mohammadi Aghdam ◽  
Kasra Bigdeli

The present study investigates static analyses of moderately thick FG plates. Using the First Order Shear Deformation Theory (FSDT), functionally graded plates subjected to transversely distributed loading with various boundary conditions are studied. Effective mechanical properties which vary from one surface of the plate to the other assumed to be defined by a power law form of distribution. Different ceramic-metal sets of materials are studied. Solution of the governing equations, including five equilibrium and eight constitutive equations, is obtained by the Extended Kantorovich Method (EKM). The system of thirteen Partial Differential Equations (PDEs) in terms of displacements, rotations, force and moment resultants are considered as multiplications of separable function of independent variables x and y. Then by successful utilization of the EKM these equations are converted to a double set of ODE systems in terms of x and y. The obtained ODE systems are then solved iteratively until final convergence is achieved. Closed form solution is presented for these ODE sets. It is shown that the method is very stable and provides fast convergence and highly accurate predictions for both thin and moderately thick plates. Comparison of the normal stresses at various points of rectangular plates and deflection of mid-point of the plate are presented and compared with available data in the literature. The effects of the volume fraction exponent n on the behavior of the normalized deflection, moment resultants and stresses of FG plates are also studied. To validate data for analysis fully clamped FG plates, another analysis was carried out using finite element code ANSYS. Close agreement is observed between predictions of the EKM and ANSYS.


Sign in / Sign up

Export Citation Format

Share Document