Torsional Vibration of Cracked Nanobeam Based on Nonlocal Stress Theory with Various Boundary Conditions: An Analytical Study

2015 ◽  
Vol 07 (03) ◽  
pp. 1550036 ◽  
Author(s):  
Omid Rahmani ◽  
S. A. H. Hosseini ◽  
M. H. Noroozi Moghaddam ◽  
I. Fakhari Golpayegani

In this paper, the torsional vibration of cracked nanobeam was studied based on a nonlocal elasticity theory. The location of the crack is simulated by a torsional spring which links segments of nanobeam together. Also, different boundary conditions, including clamped–free, clamped–clamped and clamped–torsional spring, were considered. Furthermore, a detailed parametric study was conducted to investigate the influence of crack location, nonlocal parameter, length of nanobeam, spring constant and end supports on the torsional vibration.

2017 ◽  
Vol 7 ◽  
pp. 184798041771310 ◽  
Author(s):  
Farzad Ebrahimi ◽  
Mohammad Reza Barati

In this article, electromechanical buckling behavior of size-dependent flexoelectric/piezoelectric nanobeams is investigated based on nonlocal and surface elasticity theories. Flexoelectricity represents the coupling between the strain gradients and electrical polarizations. Flexoelectric/piezoelectric nanostructures can tolerate higher buckling loads compared with conventional piezoelectric ones, especially at lower thicknesses. Nonlocal elasticity theory of Eringen is applied for analyzing flexoelectric/piezoelectric nanobeams for the first time. The flexoelectric/piezoelectric nanobeams are assumed to be in contact with a two-parameter elastic foundation which consists of infinite linear springs and a shear layer. The residual surface stresses which are usually neglected in modeling of flexoelectric nanobeams are incorporated into nonlocal elasticity to provide better understanding of the physics of the problem. Applying an analytical method which satisfies various boundary conditions, the governing equations obtained from Hamilton’s principle are solved. The reliability of the present approach is verified by comparing the obtained results with those provided in literature. Finally, the influences of nonlocal parameter, surface effects plate geometrical parameters, elastic foundation, and boundary conditions on the buckling characteristics of the flexoelectric/piezoelectric nanobeams are explored in detail.


2014 ◽  
Vol 30 (5) ◽  
pp. 443-453 ◽  
Author(s):  
M. Sobhy

AbstractIn this article, the analyses of the natural frequency and buckling of orthotopic nanoplates, such as single-layered graphene sheets, resting on Pasternak's elastic foundations with various boundary conditions are presented. New functions for midplane displacements are suggested to satisfy the different boundary conditions. These functions are examined by comparing their results with the results obtained by using the functions suggested by Reddy (Reddy JN. Mechanics of Composite Materials and Structures: Theory and Analysis. Boca Raton, FL: CRC Press; 1997). Moreover, these functions are very simple comparing with Reddy's functions, leading to ease of calculations. The equations of motion of the nonlocal model are derived using the sinusoidal shear deformation plate theory (SPT) in conjunction with the nonlocal elasticity theory. The present SPT are compared with other plate theories. Explicit solution for buckling loads and vibration are obtained for single-layered graphene sheets with isotropic and orthotropic properties; and under biaxial loads. The formulation and the method of the solution are firstly validated by executing the comparison studies for the isotropic nanoplates with the results being in literature. Then, the influences of nonlocal parameter and the other parameters on the buckling and vibration frequencies are investigated.


1997 ◽  
Vol 39 (1-2) ◽  
pp. 157-164 ◽  
Author(s):  
S.T.S. Al-Hassani ◽  
M. Darvizeh ◽  
H. Haftchenari

Author(s):  
Farzad Ebrahimi ◽  
Fateme Mahmoodi

In this paper, buckling behavior of a higher order functionally graded microbeam with porosities is investigated based on the modified couple stress theory and the exact position of the neutral axis. Porosities are evenly and unevenly distributed inside the functionally graded microbeam. Material properties of the functionally graded microbeam are assumed to vary in the thickness direction through a modified form of power-law distribution in which the volume fraction of porosities is considered. The governing equations are derived by using Hamilton's principle and an analytical method is employed to solve these equations for various boundary conditions. The present formulation and numerical results demonstrate a good agreement with some available cases in the literature. Influences of several important parameters such as power-law exponent, porosity distributions, porosity volume fraction, slenderness ratio, and various boundary conditions on buckling loads of porous functionally graded microbeams are investigated and discussed in detail.


Author(s):  
Jianshi Fang ◽  
Bo Yin ◽  
Xiaopeng Zhang ◽  
Bin Yang

The free vibration of rotating functionally graded nanobeams under different boundary conditions is studied based on nonlocal elasticity theory within the framework of Euler-Bernoulli and Timoshenko beam theories. The thickness-wise material gradient variation of the nanobeam is considered. By introducing a second-order axial shortening term into the displacement field, the governing equations of motion of the present new nonlocal model of rotating nanobeams are derived by the Hamilton’s principle. The nonlocal differential equations are solved through the Galerkin method. The present nonlocal models are validated through the convergence and comparison studies. Numerical results are presented to investigate the influences of the nonlocal parameter, angular velocity, material gradient variation together with slenderness ratio on the vibration of rotating FG nanobeams with different boundary conditions. Totally different from stationary nanobeams, the rotating nanobeams with relatively high angular velocity could produce larger fundamental frequencies than local counterparts. Additionally, the axial stretching-transverse bending coupled vibration is perfectly shown through the frequency loci veering and modal conversion.


2019 ◽  
Vol 25 (19-20) ◽  
pp. 2627-2640 ◽  
Author(s):  
Masoud Mohammadgholiha ◽  
Ali Shokrgozar ◽  
Mostafa Habibi ◽  
Hamed Safarpour

In this study, buckling and vibrational characteristics of a nanoshell reinforced with graphene nanoplatelets under uniform axial load are investigated. The material properties of the piece-wise graphene-reinforced composites (GPLRCs) are assumed to be graded in the thickness direction of a nanoshell and are estimated using a nanomechanical model. The effects of the small scale are analyzed based on nonlocal stress–strain gradient theory (NSGT). The governing equations and boundary conditions (BCs) are developed using Hamilton’s principle and are solved with assistance of the generalized differential quadrature method. The novelty of the current study is the consideration of GPLRC and size effect as well as satisfying various boundary conditions implemented on the proposed model using NSGT. The results show that, nonlocal parameter, graphene platelet (GPL) distribution pattern, length scale parameter, number of layers, and GPL weight function have significant influence on the buckling and natural frequency of the GPLRC nanoshell. Another significant result is that nonlocal parameter does not have any effect on the buckling load for each BC. The results of the current study are useful for design of the nanoactuators and nanosensors.


2020 ◽  
pp. 107754632093347
Author(s):  
Moustafa S Taima ◽  
Tamer A El-Sayed ◽  
Said H Farghaly

The free vibration of multistepped nanobeams is studied using the dynamic stiffness matrix method. The beam analysis is based on the Bernoulli–Euler theory, and the nanoscale analysis is based on the Eringen’s nonlocal elasticity theory. The nanobeam is attached to linear and rotational elastic supports at the start, end, and intermediate boundary conditions. The effect of the nonlocal parameter, boundary conditions, and step ratios on the nanobeam natural frequency is investigated. The results of the dynamic stiffness matrix methods are validated by comparing selected cases with the literature, which give excellent agreement with those literatures. The results show that the dimensionless natural frequency parameter is inversely proportional to the nonlocal parameters except in the first mode for clamped-free boundary conditions. Also, the gap between every two consecutive modes decreases with the increasing of the nonlocal parameter.


Sign in / Sign up

Export Citation Format

Share Document