scholarly journals Galactans of Gracilaria pudumadamensis (Gracilariales, Rhodophyta) of Indian Waters

2014 ◽  
Vol 9 (9) ◽  
pp. 1934578X1400900 ◽  
Author(s):  
Stalin Kondaveeti ◽  
Sanjay Kumar ◽  
Meenakshi S. Ganesan ◽  
Arup K. Siddhanta

Galactans from the Indian agarophyte Gracilaria pudumadamensis were extracted and characterized. The isolated native (GPNative) and alkali treated (GPAlkali) galactans were characterized by IR, 13C NMR, GC-MS and GPC. It was found that GPNative and GPAlkali were composed mainly of 3,6-anhydro L-galactose, 6- O-methylated D-galactose and galactose in various mole proportions (15.6:69.9:17.5 mole% for GPNative and 20.2:69.8:10.0 mole% for GPAlkali). The GPNative and GPAlkali exhibited low gel strengths (<100 g/cm2) and high melting points (~76 °C), which may be due to the presence of high 6- O-Me-galactose contents. The latter, having low sulfate (2.1%), was by far the greatest 6- O-Me-galactose containing polysaccharide in a Gracilaria spp. reported in the literature. This methylated agar contained very low heavy metal ions estimated by inductively coupled plasma spectrophotometry (ICP). The results of this investigation would be useful in bioprospecting of agarophytes, especially those occurring in Indian waters and would be potentially useful in food, personal care and related domains.

Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1687 ◽  
Author(s):  
Alexa-Maria Croitoru ◽  
Anton Ficai ◽  
Denisa Ficai ◽  
Roxana Trusca ◽  
Georgiana Dolete ◽  
...  

The scope of this article is to develop composite membranes using chitosan (CS) and graphene oxide (GO) as adsorbents for the removal of inorganic pollutants such as heavy metal ions, particularly Pb2+, from aqueous solutions. GO was obtained by modified Hummers method and blended with CS solution. The introduction of ethylenediaminetetraacetic acid (EDTA) compound to CS/GO suspension lead to an increased adsorption capacity of CS/GO for the elimination of heavy metals by forming stable chelates with them. The synthesized membranes were examined by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), and the adsorption behaviour of Pb2+ from aqueous solutions using CS/EDTA/GO membranes was evaluated using inductively coupled plasma mass spectrometry (ICP-MS). The adsorption performance of Pb2+ ions was studied by monitoring the concentration of Pb2+ against the adsorption period at an initial content of the adsorbent. The maximum adsorption efficiency of Pb2+ metal ions reached 767 mg·g−1 for CS/EDTA/GO 0.1%, 889 mg·g−1 for CS/EDTA/GO 0.3%, 970 mg·g−1 for CS/EDTA, 853 mg·g−1 for CS and 1526 mg·g−1 for GO. These findings show promising potential for CS/EDTA/GO membranes as effective adsorbent materials for the removal of heavy metal ions in water.


Author(s):  
Ning Zhao ◽  
Yuwei Bian ◽  
Xinyi Dong ◽  
Xun Gao ◽  
Longshan Zhao

Abstract An excellent magnetic multi-walled carbon nanotubes (MMWCNT) containing carboxyl material modified with ferroferric oxide (Fe3O4) nanoparticles was synthesized as the adsorbent for magnetic solid-phase extraction (MSPE) of five heavy metal ions (Pb2+, Cu2+, Co2+, Cd2+, Cr4+) in water samples followed by on-line inductively coupled plasma mass spectrometry (ICP-MS) detection. The characteristics of the adsorbent were analyzed using Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscope (SEM), and Vibrating sample magnetometer (VSM). Some factors affecting extraction efficiency including pH of sample solution, the amount of adsorbent, extraction method and time, concentration and volume of desorption solvent, desorption time and evaluation of coexisting ions were optimized. Under the optimum conditions, good linearity (r ≥ 0.9951) was obtained within the range of0.1–50.0 ng·mL−1. The limits of detection (LODs) and limits of quantification (LOQs) were 4.0–25.0 ng·L−1 and 15.0–80.0 ng·L−1, respectively. And satisfactory recoveries of five heavy metal ions ranged from 81.11% to 105.53% were acquired, and the relative standard deviations (RSDs) were no more than 6.05%. The MMWCNT synthesized had strong adsorption force for the five investigated heavy metal ions, respectively. Hence, the proposed method was so suitable and sensitive that it can be applied to the determination of trace analysis of heavy metals in water samples.


2017 ◽  
Vol 14 (1) ◽  
pp. 15
Author(s):  
M.B. Nicodemus Ujih ◽  
Mohammad Isa Mohamadin ◽  
Milla-Armila Asli ◽  
Bebe Norlita Mohammed

Heavy metal ions contamination has become more serious which is caused by the releasing of toxic water from industrial area and landfill that are very harmful to all living organism especially human and can even cause death if contaminated in small amount of heavy metal concentration. Currently, peoples are using classic method namely electrochemical treatment, chemical oxidation/reduction, chemical precipitation and reverse osmosis to eliminate the metal ions from toxic water. Unfortunately, these methods are costly and not environmentally friendly as compared to bioadsorption method, where agricultural waste is used as biosorbent to remove heavy metals. Two types of agricultural waste used in this research namely oil palm mesocarp fiber (Elaesis guineensis sp.) (OPMF) and mangrove bark (Rhizophora apiculate sp.) (MB) biomass. Through chemical treatment, the removal efficiency was found to improve. The removal efficiency is examined based on four specification namely dosage, of biosorbent to adsorb four types of metals ion explicitly nickel, lead, copper, and chromium. The research has found that the removal efficiency of MB was lower than OPMF; whereas, the multiple metals ions removal efficiency decreased in the order of Pb2+ > Cu2+ > Ni2+ > Cr2+.


2019 ◽  
Vol 70 (5) ◽  
pp. 1507-1512
Author(s):  
Baker M. Abod ◽  
Ramy Mohamed Jebir Al-Alawy ◽  
Firas Hashim Kamar ◽  
Gheorghe Nechifor

The aim of this study is to use the dry fibers of date palm as low-cost biosorbent for the removal of Cd(II), and Ni(II) ions from aqueous solution by fluidized bed column. The effects of many operating conditions such as superficial velocity, static bed height, and initial concentration on the removal efficiency of metal ions were investigated. FTIR analyses clarified that hydroxyl, amine and carboxyl groups could be very effective for bio-sorption of these heavy metal ions. SEM images showed that dry fibers of date palm have a high porosity and that metal ions can be trapped and sorbed into pores. The results show that a bed height of 6 cm, velocity of 1.1Umf and initial concentration for each heavy metal ions of 50 mg/L are most feasible and give high removal efficiency. The fluidized bed reactor was modeled using ideal plug flow and this model was solved numerically by utilizing the MATLAB software for fitting the measured breakthrough results. The breakthrough curves for metal ions gave the order of bio-sorption capacity as follow: Cd(II)]Ni(II).


Sign in / Sign up

Export Citation Format

Share Document