scholarly journals Contribution of Epithelial Cell Dysfunction to the Pathogenesis of Chronic Rhinosinusitis with Nasal Polyps

2019 ◽  
Vol 33 (6) ◽  
pp. 782-790 ◽  
Author(s):  
Michael Wynne ◽  
Carl Atkinson ◽  
Rodney J. Schlosser ◽  
Jennifer K. Mulligan

Background In the past, the airway epithelium was thought to be primarily an inert physical barrier. We now know that the upper airway epithelium plays a critical role in both innate and adaptive immunity, and that epithelial dysfunction is strongly associated with inflammatory airway disease. The pathogenesis of chronic rhinosinusitis is poorly understood, but growing evidence supports a key role for the airway epithelium in the pathophysiology of the disease. Objective The purpose of this study is to explore our current understanding of how dysfunction in human sinonasal epithelial cells (HSNECs) contributes to the pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP) and to examine how current and developing therapies affect epithelial cell functions. Methods A literature review of papers published in English pertaining to epithelial cell dysfunction in patients with CRSwNP was performed using the PubMed database. The search utilized combinations of the following key words: sinusitis, polyps, epithelium, pathophysiology, barrier function, dendritic cells, eosinophils, T cells, complement, mucociliary clearance, vitamin D, cytokines, chemokines, taste receptors, steroids, saline, and therapy. Results HSNEC mucociliary clearance, barrier function, secretion of cytokines, influence on dendritic cells, influence on T-cells, regulation of eosinophils, vitamin D metabolism, complement production, and taste receptor function are altered in patients with CRSwNP and contribute to the pathogenesis of the disease. Current therapies utilized to manage CRSwNP counteract the effects of HSNEC dysfunction and relieve key symptoms of the disease. Conclusion HSNECs are key players in both innate and adaptive immunity, and altered epithelial functions are closely intertwined with the pathogenesis of CRSwNP. Our review supports further investigation of altered HSNEC function in patients with CRSwNP and supports development of novel epithelial-targeted therapies for its management.

2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Emilie Bequignon ◽  
David Mangin ◽  
Justine Bécaud ◽  
Jennifer Pasquier ◽  
Christelle Angely ◽  
...  

Science ◽  
1999 ◽  
Vol 286 (5439) ◽  
pp. 525-528 ◽  
Author(s):  
D. Yang ◽  
O. Chertov ◽  
S. N. Bykovskaia ◽  
Q. Chen ◽  
M. J. Buffo ◽  
...  

Defensins contribute to host defense by disrupting the cytoplasmic membrane of microorganisms. This report shows that human β-defensins are also chemotactic for immature dendritic cells and memory T cells. Human β-defensin was selectively chemotactic for cells stably transfected to express human CCR6, a chemokine receptor preferentially expressed by immature dendritic cells and memory T cells. The β-defensin–induced chemotaxis was sensitive to pertussis toxin and inhibited by antibodies to CCR6. The binding of iodinated LARC, the chemokine ligand for CCR6, to CCR6-transfected cells was competitively displaced by β-defensin. Thus, β-defensins may promote adaptive immune responses by recruiting dendritic and T cells to the site of microbial invasion through interaction with CCR6.


2010 ◽  
Vol 121 (1-2) ◽  
pp. 247-249 ◽  
Author(s):  
Shelley Gorman ◽  
Melinda A. Judge ◽  
Prue H. Hart
Keyword(s):  
T Cells ◽  

Sign in / Sign up

Export Citation Format

Share Document