Automated Indentation Demonstrates Structural Stiffness of Femoral Articular Cartilage and Temporomandibular Joint Mandibular Condylar Cartilage Is Altered in FgF2KO Mice

Cartilage ◽  
2020 ◽  
pp. 194760352096256
Author(s):  
Paige S. Woods ◽  
Alyssa A. Morin ◽  
Po-Jung Chen ◽  
Sarah Mahonski ◽  
Liping Xiao ◽  
...  

Objective Employ an automated indentation technique, using a commercially available machine, to assess the effect of fibroblast growth factor 2 (FGF2) expression on structural stiffness over the surface of both murine femoral articular cartilage (AC) and temporomandibular joint (TMJ) mandibular condylar cartilage (MCC). Design Experiments were performed using 3-month-old female homozygote Fgf2KO mice with wild type (WT) littermates. After euthanization, isolated mandibles and hindlimbs were either processed for histology or subjected to automated indentation on a Biomomentum Mach-1 v500csst with a 3-axis motion controller in a phosphate buffered saline bath using a 0.3 mm spherical tip indenter. The effect of indentation depth on normal force was characterized, then structural stiffness was calculated and mapped at multiple positions on the AC and MCC. Results Automated indentation of the AC and TMJ MCC was successfully completed and was able to demonstrate both regional variation in structural stiffness and differences between WT and Fgf2KO mice. Structural stiffness values for Fgf2KO AC were significantly smaller than WT at both the medial/anterior ( P < 0.05) and medial/posterior ( P < 0.05) positions. Global Fgf2KO also lead to a decrease in MCC thickness of the TMJ compared with WT ( P < 0.05) and increased structural stiffness values for Fgf2KO at both the posterior and anterior location ( P < 0.05). Conclusions Automated indentation spatially resolved differences in structural stiffness between WT and Fgf2KO tissue, demonstrating FGF2 expression affects femoral AC and TMJ MCC. This quantitative method will provide a valuable approach for functional characterization of cartilage tissues in murine models relevant to knee joint and TMJ health and disease.

2020 ◽  
Vol 42 (6) ◽  
pp. 658-663
Author(s):  
Xiyuan Guo ◽  
Ippei Watari ◽  
Yuhei Ikeda ◽  
Wu Yang ◽  
Takashi Ono

Summary Background Hyaluronic acid (HA) is a major molecular component of the articular cartilage of the temporomandibular joint (TMJ) influencing joint lubrication. Functional lateral shift of the mandible (FLSM) can lead to malocclusion. This study investigated the effects of FLSM on HA metabolism and lubrication of the TMJ in growing rats. Methods Thirty 5-week-old male Wistar rats were divided into shift, recovery, and control groups. Rats in the shift and recovery groups were fitted with guiding plates to produce a 2-mm FLSM which were removed from the rats in the recovery group 14 days later. Animals were sacrificed at 14 and 28 days after the appliances were attached. Immunohistochemistry of HA-binding protein (HABP), hyaluronan synthase (HAS), and hyaluronoglucosaminidases (HYALs) was examined. Results The thickness of HABP-positively stained areas in the lateral regions in the bilateral condyle was reduced during the experimental period in the shift group compared with that in the control group. The proportion of HAS2-stained areas was bilaterally decreased in different regions of condylar cartilage during the experimental period in the shift group. The reduction of the HYAL2-stained area proportion in the condylar cartilage was more significant than that of HYAL1 at 14 days after appliance attachment in the shift group. HAS2 staining was not recovered in the recovery group. Limitations This research was based on animal experiments with a limited experimental period. Conclusion FLSM altered lubrication related HA metabolism in the articular cartilage of the TMJ in growing rats.


Author(s):  
Catherine K. Hagandora ◽  
Alejandro J. Almarza

The temporomandibular joint (TMJ) is a synovial, bilateral joint formed by the articulation of the condyle of the mandible and the articular eminence and glenoid fossa of the temporal bone. The articulating tissues of the joint include the TMJ disc and the mandibular condylar cartilage (MCC). It is estimated that 10 million Americans are affected by TMJ disorders (TMDs), a term encompassing a variety of conditions which result in positional or structural abnormalities in the joint. [1] Characterization of the properties of the articulating tissues of the joint is a necessary prequel to understanding the process of pathogenesis as well as tissue engineering suitable constructs for replacement of damaged joint fibrocartilage. Furthermore, the current literature lacks a one-to-one comparison of the regional compressive behavior of the goat MCC to the TMJ disc.


2013 ◽  
Vol 63 ◽  
pp. 204-212 ◽  
Author(s):  
Xueqi Gan ◽  
Zhenbing Cai ◽  
Mengting Qiao ◽  
Shanshan Gao ◽  
Minhao Zhu ◽  
...  

2008 ◽  
Vol 130 (1) ◽  
Author(s):  
M. Singh ◽  
M. S. Detamore

Mandibular condylar cartilage plays a crucial role in temporomandibular joint (TMJ) function, which includes facilitating articulation with the temporomandibular joint disc and reducing loads on the underlying bone. The cartilage experiences considerable tensile forces due to direct compression and shear. However, only scarce information is available about its tensile properties. The present study aims to quantify the biomechanical characteristics of the mandibular condylar cartilage to aid future three-dimensional finite element modeling and tissue engineering studies. Porcine condylar cartilage was tested under uniaxial tension in two directions, anteroposterior and mediolateral, with three regions per direction. Stress relaxation behavior was modeled using the Kelvin model and a second-order generalized Kelvin model, and collagen fiber orientation was determined by polarized light microscopy. The stress relaxation behavior of the tissue was biexponential in nature. The tissue exhibited greater stiffness in the anteroposterior direction than in the mediolateral direction as reflected by higher Young’s (2.4 times), instantaneous (1.9 times), and relaxed (1.9 times) moduli. No significant differences were observed among the regional properties in either direction. The predominantly anteroposterior macroscopic fiber orientation in the fibrous zone of condylar cartilage correlated well with the biomechanical findings. The condylar cartilage appears to be less stiff and less anisotropic under tension than the anatomically and functionally related TMJ disc. The anisotropy of the condylar cartilage, as evidenced by tensile behavior and collagen fiber orientation, suggests that the shear environment of the TMJ exposes the condylar cartilage to predominantly but not exclusively anteroposterior loading.


2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Adam R. Chin ◽  
Alejandro J. Almarza

Abstract Temporomandibular joint (TMJ) disorders (TMDs) are not well understood and the mechanical differences between the regions of the mandibular condylar cartilage (MCC) and the TMJ disc have not been thoroughly compared. As of now, there are no commercially available regenerative therapies for the TMJ. Elucidating the mechanical properties of these two structures of the articulating joint will help future efforts in developing tissue engineering treatments of the TMJ. In this study, we evaluate the compressive properties of the porcine disc and mandibular condylar cartilage by performing unconfined compression at 10% strain with 4.5%/min strain rate. Punches (4 mm biopsy) from both tissues were taken from five different regions of both the MCC and TMJ: anterior, posterior, lateral, medial, and central. Previously, theoretical models of compression in the porcine tissue did not fit the whole ramp-relaxation behavior. Thus, the data stress–relaxation was fitted to the biphasic transversely isotropic model, for both the TMJ disc and cartilage. From the results found in the disc, it was found that the posterior region had the highest values in multiple viscoelastic parameters when compared to the other regions. The mandibular condylar cartilage was only found to be significantly different in the transverse modulus between the posterior and lateral regions. Both the TMJ disc and MCC had similar magnitudes of values (for the modulus and other corresponding compressive properties) and behavior under this testing modality.


Sign in / Sign up

Export Citation Format

Share Document