lateral shift
Recently Published Documents


TOTAL DOCUMENTS

204
(FIVE YEARS 44)

H-INDEX

24
(FIVE YEARS 3)

2021 ◽  
Vol 21 (24) ◽  
pp. 18641-18668
Author(s):  
Cornelia Strube ◽  
Peter Preusse ◽  
Manfred Ern ◽  
Martin Riese

Abstract. In the southern winter polar stratosphere, the distribution of gravity wave momentum flux in many state-of-the-art climate simulations is inconsistent with long-time satellite and superpressure balloon observations around 60∘ S. Recent studies hint that a lateral shift between prominent gravity wave sources in the tropospheric mid-latitudes and the location where gravity wave activity is present in the stratosphere causes at least part of the discrepancy. This lateral shift cannot be represented by the column-based gravity wave drag parameterisations used in most general circulation models. However, recent high-resolution analysis and re-analysis products of the European Centre for Medium-Range Weather Forecasts Integrated Forecast System (ECMWF-IFS) show good agreement with the observations and allow for a detailed investigation of resolved gravity waves, their sources, and propagation paths. In this paper, we identify resolved gravity waves in the ECMWF-IFS analyses for a case of high gravity wave activity in the lower stratosphere using small-volume sinusoidal fits to characterise these gravity waves. The 3D wave vector together with perturbation amplitudes, wave frequency, and a fully described background atmosphere are then used to initialise the Gravity Wave Regional or Global Ray Tracer (GROGRAT) gravity wave ray tracer and follow the gravity waves backwards from the stratosphere. Finally, we check for the indication of source processes on the path of each ray and, thus, quantitatively attribute gravity waves to sources that are represented within the model. We find that stratospheric gravity waves are indeed subject to far (>1000 km) lateral displacement from their sources, which already take place at low altitudes (<20 km). Various source processes can be linked to waves within stratospheric gravity wave (GW) patterns, such as the orography equatorward of 50∘ S and non-orographic sources above the Southern Ocean. These findings may explain why superpressure balloons observe enhanced gravity wave momentum fluxes in the lower stratosphere over the Southern Ocean despite an apparent lack of sources at this latitude. Our results also support the need to improve gravity wave parameterisations to account for meridional propagation.


Author(s):  
Jinfeng Li ◽  
Helen J. Huang

Introducing unexpected perturbations to challenge gait stability is an effective approach to investigate balance control strategies. Little is known about the extent to which people can respond to small perturbations during walking. This study aimed to determine how subjects adapted gait stability to multidirectional perturbations with small magnitudes applied on a stride-by-stride basis. Ten healthy young subjects walked on a treadmill that either briefly decelerated belt speed ("stick"), accelerated belt speed ("slip"), or shifted the platform medial-laterally at right leg mid-stance. We quantified gait stability adaptation in both anterior-posterior and medial-lateral directions using margin of stability and its components, base of support and extrapolated center of mass. Gait stability was disrupted upon initially experiencing the small perturbations as margin of stability decreased in the stick, slip, and medial shift perturbations and increased in the lateral shift perturbation. Gait stability metrics were generally disrupted more for perturbations in the coincident direction. Subjects employed both feedback and feedforward strategies in response to the small perturbations, but mostly used feedback strategies during adaptation. Subjects primarily used base of support (foot placement) control in the lateral shift perturbation and extrapolated center of mass control in the slip and medial shift perturbations. These findings provide new knowledge about the extent of gait stability adaptation to small magnitude perturbations applied on a stride-by-stride basis and reveal potential new approaches for balance training interventions to target foot placement and center of mass control.


2021 ◽  
pp. 036354652110314
Author(s):  
Robert C. Spang ◽  
Amirhossein Jahandar ◽  
Kathleen N. Meyers ◽  
Joseph T. Nguyen ◽  
Suzanne A. Maher ◽  
...  

Background: The distribution of contact forces across the dysplastic patellofemoral joint has not been adequately quantified because models cannot easily mimic the dysplasia of both the trochlea and the patella. Thus, the mechanical consequences of surgical treatments to correct dysplasia cannot be established. Purpose/Hypothesis: The objective of this study was to quantify the contact mechanics and kinematics of normal, mild, and severely dysplastic patellofemoral joints using synthetic mimics of the articulating surfaces on cadavers. We tested the hypothesis that severely dysplastic joints would result in significantly increased patellofemoral contact forces and abnormal kinematics. Study Design: Controlled laboratory study. Method: Patellofemoral dysplasia was simulated in 9 cadaveric knees by replacing the native patellar and trochlear surfaces with synthetic patellar and trochlear implants. For each knee, 3 synthetic surface geometries (normal, showing no signs of dysplasia; mild, exemplifying Dejour type A; and severe, exemplifying Dejour type B) were randomized for implantation and testing. Patellar kinematics and the sum of forces acting on the medial and lateral patellar facets were computed for each knee and for each condition at 10° increments from 0° to 70° of flexion. Results: A pronounced lateral shift in the weighted center of contact of the lateral facet occurred for severely dysplastic knees from 20° to 70° of flexion. Compared with normal geometries, lateral patellar facet forces exhibited a significant increase only with mild dysplasia from 50° to 70° of flexion and with severe dysplasia at 70° of flexion. No measurable differences in medial patellar facet mechanics or joint kinematics occurred. Conclusion: Our hypothesis was rejected: Severely dysplastic joints did not result in significantly increased patellofemoral contact forces and abnormal kinematics in our cadaveric simulation. Rather, severe dysplasia resulted in a pronounced lateral shift in contact forces across the lateral patellar facet, while changes in kinematics and the magnitude of contact forces were not significant. Clinical Relevance: Including dysplasia of both the patella and trochlea is required to fully capture the mechanics of this complex joint. The pronounced lateralization of contact force in severely dysplastic patellofemoral joints should be considered to avoid cartilage overload with surgical manipulation.


Author(s):  
Hayden J. Wisniewski ◽  
Mallory Whalen ◽  
Ralf K. Heilmann ◽  
Mark L. Schattenburg ◽  
Brandon D. Chalifoux

2021 ◽  
Author(s):  
Saeed Ahmed ◽  
Muqaddar Abbas ◽  
muhammad awais ◽  
Anwar Ali Khan ◽  
Zia uddin

2021 ◽  
Author(s):  
Arata Nakajima ◽  
Masato Sonobe ◽  
Yorikazu Akatsu ◽  
Manabu Yamada ◽  
Keiichiro Yamamoto ◽  
...  

Abstract Background: Total knee arthroplasty (TKA) is an established surgical treatment for advanced knee osteoarthritis by which patients can expect improvement of knee pain and function. Although many surgeons have investigated limb alignment after TKA, changes in coronal positional relation between the femur and tibia are not known well.Methods: Radiographs of 105 knees of young patients without osteoarthritic changes who received arthroscopic surgeries at our hospital were used in this study. Using 2D-templates of the medial pivot design (the FINE total knee), we simulated TKA on the knee radiographs. First, the femoral component was placed in normal knee alignment and then was merged to the medial concave of the insert where the tibial component was placed in neutral alignment. The length of the mediolateral shift of the femoral component was measured as an estimate of lateral shift of the femoral condyle, of which association with radiographic parameters for the knee was analyzed. Subjects were classified into three groups according to the femoral component size that was chosen in simulation of TKA.Results: The estimated mean lateral shift of the femoral condyle was 5.99 ± 1.98 mm and was greater in males than females (p < 0.05). Also, it was most highly correlated with the medial proximal tibial angle (MPTA) (r = -0.553, p < 0.01). A group receiving larger component sizes significantly shifted more laterally compared with a group receiving smaller component sizes (p < 0.01). Conclusions: These results suggest that the coronal positional relation between the femur and tibia is altered and subsequent ligament imbalance may occur after mechanically aligned TKA using the medial pivot design.


2021 ◽  
Author(s):  
Yao Huang ◽  
Jingjing Zhang ◽  
Jinhui Zhou ◽  
Bo Qiang ◽  
Zhengji XU ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Cornelia Strube ◽  
Peter Preusse ◽  
Manfred Ern ◽  
Martin Riese

Abstract. In the southern winter polar stratosphere the distribution of gravity wave momentum flux in many state-of-the-art climate simulations is inconsistent with long-time satellite and superpressure balloon observations around 60° S. Recent studies hint that a lateral shift between prominent gravity wave sources in the tropospheric mid-latitudes and the location where gravity wave activity is present in the stratosphere causes at least parts of the discrepancy. This lateral shift cannot be represented by the column-based gravity wave drag parametrisations used in most general circulation models. However, recent high-resolution analysis and re-analysis products of the ECMWF-IFS show good agreement to observations and allow for a detailed investigation of resolved gravity waves, their sources and propagation paths. In this paper, we identify resolved gravity waves in the ECMWF-IFS analyses for a case of high gravity wave activity in the lower stratosphere using small-volume sinusoidal fits to characterise these gravity waves. The 3D wave vector together with perturbation amplitudes, wave frequency and a fully described background atmosphere are then used to initialise the GROGRAT gravity wave ray-tracer and follow the gravity waves backwards from the stratosphere. Finally, we check for indication of source processes on the path of each ray and thus quantitatively attribute gravity waves to sources that are represented within the model. We find that stratospheric gravity waves are indeed subject to far (> 1000 km) lateral displacement from their sources, taking place already at low altitudes (


Sign in / Sign up

Export Citation Format

Share Document