scholarly journals Lipofibromatous hamartoma of the median nerve: 3T MRI evaluation by constrained spherical deconvolution analysis

2017 ◽  
Vol 31 (4) ◽  
pp. 445-448
Author(s):  
Alessandro Arrigo ◽  
Michele Gaeta ◽  
Alessandro Calamuneri ◽  
Enricomaria Mormina ◽  
Silvia Marino ◽  
...  

In this study we described a case of lipofibromatous hamartoma involving the median nerve. We adopted diffusion tensor imaging and constrained spherical deconvolution-based tractography to reconstruct the affected median nerve. Moreover, we extracted diffusion-based parameters reflecting axonal integrity loss of median nerve fibres. Our data showed that constrained spherical deconvolution-based tractography outperformed the diffusion tensor imaging-based method, allowing the detection of the entire median nerve, including its branches, thus offering a robust method to investigate the involvement of the median nerve in pathological conditions. All clinical and technical implications are extensively described.

2013 ◽  
Vol 118 (6) ◽  
pp. 1367-1377 ◽  
Author(s):  
Shawna Farquharson ◽  
J.-Donald Tournier ◽  
Fernando Calamante ◽  
Gavin Fabinyi ◽  
Michal Schneider-Kolsky ◽  
...  

Object Diffusion-based MRI tractography is an imaging tool increasingly used in neurosurgical procedures to generate 3D maps of white matter pathways as an aid to identifying safe margins of resection. The majority of white matter fiber tractography software packages currently available to clinicians rely on a fundamentally flawed framework to generate fiber orientations from diffusion-weighted data, namely diffusion tensor imaging (DTI). This work provides the first extensive and systematic exploration of the practical limitations of DTI-based tractography and investigates whether the higher-order tractography model constrained spherical deconvolution provides a reasonable solution to these problems within a clinically feasible timeframe. Methods Comparison of tractography methodologies in visualizing the corticospinal tracts was made using the diffusion-weighted data sets from 45 healthy controls and 10 patients undergoing presurgical imaging assessment. Tensor-based and constrained spherical deconvolution–based tractography methodologies were applied to both patients and controls. Results Diffusion tensor imaging–based tractography methods (using both deterministic and probabilistic tractography algorithms) substantially underestimated the extent of tracks connecting to the sensorimotor cortex in all participants in the control group. In contrast, the constrained spherical deconvolution tractography method consistently produced the biologically expected fan-shaped configuration of tracks. In the clinical cases, in which tractography was performed to visualize the corticospinal pathways in patients with concomitant risk of neurological deficit following neurosurgical resection, the constrained spherical deconvolution–based and tensor-based tractography methodologies indicated very different apparent safe margins of resection; the constrained spherical deconvolution–based method identified corticospinal tracts extending to the entire sensorimotor cortex, while the tensor-based method only identified a narrow subset of tracts extending medially to the vertex. Conclusions This comprehensive study shows that the most widely used clinical tractography method (diffusion tensor imaging–based tractography) results in systematically unreliable and clinically misleading information. The higher-order tractography model, using the same diffusion-weighted data, clearly demonstrates fiber tracts more accurately, providing improved estimates of safety margins that may be useful in neurosurgical procedures. We therefore need to move beyond the diffusion tensor framework if we are to begin to provide neurosurgeons with biologically reliable tractography information.


2008 ◽  
Vol 38 (1) ◽  
pp. 51-59 ◽  
Author(s):  
Gustav Andreisek ◽  
Lawrence M. White ◽  
Andrea Kassner ◽  
George Tomlinson ◽  
Marshall S. Sussman

2012 ◽  
Vol 81 (7) ◽  
pp. e775-e782 ◽  
Author(s):  
Roman Guggenberger ◽  
Patrick Eppenberger ◽  
Daniel Markovic ◽  
Daniel Nanz ◽  
Avneesh Chhabra ◽  
...  

2019 ◽  
Author(s):  
Hannelore Aerts ◽  
Thijs Dhollander ◽  
Daniele Marinazzo

AbstractThe use of diffusion MRI (dMRI) for assisting in the planning of neurosurgery has become increasingly common practice, allowing to non-invasively map white matter pathways via tractography techniques. Limitations of earlier pipelines based on the diffusion tensor imaging (DTI) model have since been revealed and improvements were made possible by constrained spherical deconvolution (CSD) pipelines. CSD allows to resolve a full white matter (WM) fiber orientation distribution (FOD), which can describe so-called “crossing fibers”: complex local geometries of WM tracts, which DTI fails to model. This was found to have a profound impact on tractography results, with substantial implications for presurgical decision making and planning. More recently, CSD itself has been extended to allow for modeling of other tissue compartments in addition to the WM FOD, typically resulting in a 3-tissue CSD model. It seems likely this may improve the capability to resolve WM FODs in the presence of infiltrating tumor tissue. In this work, we evaluated the performance of 3-tissue CSD pipelines, with a focus on within-tumor tractography. We found that a technique named single-shell 3-tissue CSD (SS3T-CSD) successfully allowed tractography within infiltrating gliomas, without increasing existing single-shell dMRI acquisition requirements.


2015 ◽  
Vol 26 (6) ◽  
pp. 1921-1928 ◽  
Author(s):  
Lukas Filli ◽  
Marco Piccirelli ◽  
David Kenkel ◽  
Andreas Boss ◽  
Andrei Manoliu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document