single shell
Recently Published Documents


TOTAL DOCUMENTS

629
(FIVE YEARS 39)

H-INDEX

20
(FIVE YEARS 3)

Author(s):  
Andrew D Davis ◽  
Stefanie Hassel ◽  
Stephen R Arnott ◽  
Geoffrey B Hall ◽  
Jacqueline K Harris ◽  
...  

Abstract Clinically oriented studies commonly acquire diffusion MRI (dMRI) data with a single non-zero b-value (i.e. single-shell) and diffusion weighting of b=1000 s/mm2. To produce microstructural parameter maps, the tensor model is usually used, despite known limitations. Although compartment models have demonstrated improved fits in multi-shell dMRI data, they are rarely used for single-shell parameter maps, where their effectiveness is unclear from the literature. Here, various compartment models combining isotropic balls and symmetric tensors were fitted to single-shell dMRI data to investigate model fitting optimization and extract the most information possible. Full testing was performed in 5 subjects, and 3 subjects with multi-shell data were included for comparison. The results were tested and confirmed in a further 50 subjects. The Markov chain Monte Carlo (MCMC) model fitting technique outperformed non-linear least squares. Using MCMC, the 2-fibre-orientation mono-exponential ball & stick model (BSME 2) provided artifact-free, stable results, in little processing time. The analogous ball & zeppelin model (BZ2) also produced stable, low-noise parameter maps, though it required much greater computing resources (50 000 burn-in steps). In single-shell data, the gamma-distributed diffusivity ball & stick model (BSGD 2) underperformed relative to other models, despite being an often-used software default. It produced artifacts in the diffusivity maps even with extremely long processing times. Neither increased diffusion weighting nor a greater number of gradient orientations improved BSGD 2 fits. In white matter (WM), the tensor produced the best fit as measured by Bayesian information criterion. This result contrasts with studies using multi-shell data. However, in crossing fibre regions the tensor confounded geometric effects with fractional anisotropy (FA): the planar/linear WM FA ratio was 49%, while BZ2 and BSME 2 retained 76% and 83% of restricted fraction, respectively. As a result, the BZ2 and BSME 2 models are strong candidates to optimize information extraction from single-shell dMRI studies.


Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 1710-1719
Author(s):  
Mehrdad Hejazi ◽  
Saeid Baranizadeh ◽  
Maryam Daei

2021 ◽  
Author(s):  
Abrar Faiyaz ◽  
Marvin Doyley ◽  
Giovanni Schifitto ◽  
Jianhui Zhong ◽  
Md Nasir Uddin
Keyword(s):  

Author(s):  
Katherine E. Lawrence ◽  
Leila Nabulsi ◽  
Vigneshwaran Santhalingam ◽  
Zvart Abaryan ◽  
Julio E. Villalon-Reina ◽  
...  

AbstractA comprehensive characterization of the brain’s white matter is critical for improving our understanding of healthy and diseased aging. Here we used diffusion-weighted magnetic resonance imaging (dMRI) to estimate age and sex effects on white matter microstructure in a cross-sectional sample of 15,628 adults aged 45–80 years old (47.6% male, 52.4% female). Microstructure was assessed using the following four models: a conventional single-shell model, diffusion tensor imaging (DTI); a more advanced single-shell model, the tensor distribution function (TDF); an advanced multi-shell model, neurite orientation dispersion and density imaging (NODDI); and another advanced multi-shell model, mean apparent propagator MRI (MAPMRI). Age was modeled using a data-driven statistical approach, and normative centile curves were created to provide sex-stratified white matter reference charts. Participant age and sex substantially impacted many aspects of white matter microstructure across the brain, with the advanced dMRI models TDF and NODDI detecting such effects the most sensitively. These findings and the normative reference curves provide an important foundation for the study of healthy and diseased brain aging.


2021 ◽  
Author(s):  
Wang Xiaoguang ◽  
Wang Guanqiong ◽  
Sun Shunkai ◽  
Xiao Delong ◽  
Ding Ning ◽  
...  
Keyword(s):  
Z Pinch ◽  

2021 ◽  
Vol 28 (2) ◽  
pp. 128-135
Author(s):  
Janusz Kozak

Abstract Steel sandwich structures are perceived as alternatives to single-skin welded structures in the shipbuilding industry due its advantages like significant reduction of mass in relation to typical single skin structure. However, beside problems with their strength properties itself, applications in real structures requires of solving the problem of joining, both for connection sandwich to sandwich as well as sandwiches to single-shell structures. Proper design of joints is connected with some factors like lack of attempt to interior of panel, introduction of additional parts and welds with completely different stiffness. In the paper the results of laboratory fatigue tests of selected joints as well as numerical calculation of stressed for different kind of joints of sandwich structures are presented. As result of calculations optimisation of geometry for selected joints is performed.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 970
Author(s):  
Maedeh Khalilian ◽  
Kamran Kazemi ◽  
Mahshid Fouladivanda ◽  
Malek Makki ◽  
Mohammad Sadegh Helfroush ◽  
...  

The majority of network studies of human brain structural connectivity are based on single-shell diffusion-weighted imaging (DWI) data. Recent advances in imaging hardware and software capabilities have made it possible to acquire multishell (b-values) high-quality data required for better characterization of white-matter crossing-fiber microstructures. The purpose of this study was to investigate the extent to which brain structural organization and network topology are affected by the choice of diffusion magnetic resonance imaging (MRI) acquisition strategy and parcellation scale. We performed graph-theoretical network analysis using DWI data from 35 Human Connectome Project subjects. Our study compared four single-shell (b = 1000, 3000, 5000, 10,000 s/mm2) and multishell sampling schemes and six parcellation scales (68, 200, 400, 600, 800, 1000 nodes) using five graph metrics, including small-worldness, clustering coefficient, characteristic path length, modularity and global efficiency. Rich-club analysis was also performed to explore the rich-club organization of brain structural networks. Our results showed that the parcellation scale and imaging protocol have significant effects on the network attributes, with the parcellation scale having a substantially larger effect. Regardless of the parcellation scale, the brain structural networks exhibited a rich-club organization with similar cortical distributions across the parcellation scales involving at least 400 nodes. Compared to single b-value diffusion acquisitions, the deterministic tractography using multishell diffusion imaging data consisting of shells with b-values higher than 5000 s/mm2 resulted in significantly improved fiber-tracking results at the locations where fiber bundles cross each other. Brain structural networks constructed using the multishell acquisition scheme including high b-values also exhibited significantly shorter characteristic path lengths, higher global efficiency and lower modularity. Our results showed that both parcellation scale and sampling protocol can significantly impact the rich-club organization of brain structural networks. Therefore, caution should be taken concerning the reproducibility of connectivity results with regard to the parcellation scale and sampling scheme.


2021 ◽  
Vol 15 ◽  
Author(s):  
Olayinka Oladosu ◽  
Wei-Qiao Liu ◽  
Bruce G. Pike ◽  
Marcus Koch ◽  
Luanne M. Metz ◽  
...  

Tissue pathology in multiple sclerosis (MS) is highly complex, requiring multi-dimensional analysis. In this study, our goal was to test the feasibility of obtaining high angular resolution diffusion imaging (HARDI) metrics through single-shell modeling of diffusion tensor imaging (DTI) data, and investigate how advanced measures from single-shell HARDI and DTI tractography perform relative to classical DTI metrics in assessing MS pathology. We examined 52 relapsing-remitting MS patients who had 3T anatomical brain MRI and DTI. Single-shell HARDI modeling yielded 5 sub-voxel-based metrics, totalling 11 diffusion measures including 4 DTI and 2 tractography metrics. Based on machine learning of 3-dimensional regions of interest, we evaluated the importance of the measures through several tissue classification tasks. These included two within-subject comparisons: lesion versus normal appearing white matter (NAWM); and lesion core versus shell. Further, by stratifying patients as having high (above 75%ile) and low (below 25%ile) number of MS lesions, we also performed 2 classifications between subjects for lesions and NAWM respectively. Results showed that in lesion-NAWM analysis, HARDI orientation distribution function (ODF) energy, DTI fractional anisotropy (FA), and HARDI orientation dispersion index were the top three metrics, which together achieved 65.2% accuracy and 0.71 area under the receiver operating characteristic curve (AUROC). In core-shell analysis, DTI mean diffusivity (MD), radial diffusivity, and FA were the top three metrics, and MD dominated the classification, which achieved 59.3% accuracy and 0.59 AUROC alone. Between patients, FA was the leading feature in lesion comparisons, while ODF energy was the best in NAWM separation. Collectively, single-shell modeling of common diffusion data can provide robust orientation measures of lesion and NAWM pathology, and DTI metrics are most sensitive to intra-lesion abnormality. Combined analysis of both advanced and classical diffusion measures may be critical for improved understanding of MS pathology.


Sign in / Sign up

Export Citation Format

Share Document