scholarly journals Systemic inflammation and protease profile of Afro-Caribbean patients with sepsis

2021 ◽  
Vol 9 ◽  
pp. 205031212110125
Author(s):  
Panid Borhanjoo ◽  
Navneet Singh ◽  
Sridesh Nath ◽  
MD Sadakat Chowdhury ◽  
Carl Swanson ◽  
...  

Objectives: Sepsis is one of the leading causes of morbidity and mortality within the healthcare system and remains a diagnostic and therapeutic challenge. A major issue in the diagnosis of sepsis is understanding the pathophysiologic mechanism, which revolves around host immune system activation and dysregulated responses. African Americans are more likely to experience severe sepsis with higher mortality rates compared to the general population. This pilot study characterized multiple inflammatory markers and proteases in plasma of primarily African American and Afro-Caribbean patients with mild sepsis. Methods: Plasma was collected from 16 healthy controls and 15 subjects presenting with sepsis, on admission, and again upon resolution of the signs of sepsis, defined as a resolution of sepsis criteria. Plasma samples were analyzed for cytokines, chemokines, and proteases using multiplex bead assays. Results: Elevated levels of granulocyte colony-stimulating factor, interleukin-10, interleukin-15, interleukin-1 receptor antagonist, interleukin-8, interferon gamma-induced protein 10, monocyte chemoattractant protein-1, matrix metallopeptidase 12, and cathepsin S were identified in plasma from sepsis patients on admission compared to control subjects. Interleukin-6, interleukin-8, granulocyte colony-stimulating factor, and cathepsin S were reduced in sepsis patients upon clinical resolution of sepsis. Conclusion: These findings profile the circulating inflammatory cytokines, chemokines, and proteases in African Americans and Afro-Caribbean patients during sepsis. The role of these targets in sepsis needs addressing in this patient population.

2018 ◽  
Vol 217 (9) ◽  
pp. 1481-1490 ◽  
Author(s):  
Sivakumar Periasamy ◽  
Jonathan A Harton

Abstract Bacterial pneumonia is a common risk factor for acute lung injury and sepsis-mediated death, but the mechanisms underlying the overt inflammation and accompanying pathology are unclear. Infiltration of immature myeloid cells and necrotizing inflammation mediate severe pathology and death during pulmonary infection with Francisella tularensis. However, eliciting mature myeloid cells provides protection. Yet, the host factors responsible for this pathologic immature myeloid cell response are unknown. Here, we report that while the influx of both mature and immature myeloid cells is strictly MyD88 dependent, the interleukin 1 (IL-1) receptor mediates an important dual function via its ligands IL-1α and IL-1β. Although IL-1β favors the appearance of bacteria-clearing mature myeloid cells, IL-1α contributes to lung infiltration by ineffective and pathologic immature myeloid cells. Finally, IL-1α and IL-1β are not the sole factors involved, but myeloid cell responses during acute pneumonia were largely unaffected by lung levels of interleukin 10, interleukin 17, CXCL1, granulocyte colony-stimulating factor, and granulocyte-macrophage colony-stimulating factor.


Blood ◽  
1988 ◽  
Vol 71 (2) ◽  
pp. 430-435
Author(s):  
WE Fibbe ◽  
J van Damme ◽  
A Billiau ◽  
HM Goselink ◽  
PJ Voogt ◽  
...  

Pure interleukin 1 (IL 1) was found to stimulate established human bone marrow stromal layers in long-term culture to produce colony- stimulating activity (CSA). Maximal concentrations in the culture medium were reached 24 hours after a single IL 1 pulse. The effect could be neutralized by a specific rabbit anti-IL 1 antiserum. Stromal layers, once stimulated by IL 1, continued to release CSA into the culture medium in the absence of exogenous IL 1. A second IL 1 pulse induced CSA release in an identical manner, as did the primary stimulation, indicating that the CSA released was actively produced. Using specific immunologic assays, both granulocyte colony-stimulating factor (G-CSF) and macrophage CSF (M-CSF) could be identified in the culture supernatants, and production of both factors was inducible by IL 1. Shortly after initiation of the long-term marrow cultures “spontaneous” G-CSF and M-CSF release occurred. The release of G-CSF diminished following addition of the anti-IL 1 antiserum, indicating that endogenous production of IL 1 by stromal cells had contributed to this effect. These results further support the role of IL 1 as an important modulator of CSF production by cells of the hematopoietic microenvironment.


Blood ◽  
1988 ◽  
Vol 72 (6) ◽  
pp. 2007-2014 ◽  
Author(s):  
K Ikebuchi ◽  
JN Ihle ◽  
Y Hirai ◽  
GG Wong ◽  
SC Clark ◽  
...  

Serial observations of blast cell colony development from spleen cells of mice treated with 5-fluorouracil (5-FU) four days earlier revealed that either form of human interleukin-1 (IL-1 alpha or IL-1 beta) hastens the emergence of interleukin-3 (IL-3)-dependent blast cell colonies. This activity was essentially indistinguishable from the effect of interleukin-6 (IL-6) or granulocyte colony-stimulating factor (G-CSF) in the same system, an effect that we have ascribed previously to a shortening of the G0 period of the dormant stem cells. We also analyzed the time courses of colony formation from cultures of day-2 post-5-FU marrow cells supported by IL-1 alpha, IL-6, or G-CSF alone or in combination with IL-3. In the presence of IL-3, G-CSF and IL-6 but not IL-1 alpha hastened the development of colonies and increased the numbers of multilineage colonies relative to cultures of IL-3 alone. This observation, together with our previous data from the human system, suggests that the synergistic effect of IL-1 is likely due to induction of secondary growth factors, including IL-6 and G-CSF, by accessory cells in culture. The effect of IL-6 on G0 was confirmed by analysis of the cycling status of progenitor cells in short-term culture. While neither IL-3 nor IL-6 alone had any effect on the cycling status, the combination of factors resulted in a rapid recruitment of quiescent cells into cell cycle (within 48 hours) as represented by a twofold increase in the numbers of multipotential progenitors and a significant increase in the sensitivity of these cells to 3H-thymidine with high specific activity. Combinational testing of all of these synergistic factors revealed that the target cell populations for the IL-1, IL-6, and G-CSF overlap considerably, suggesting that they all may act through a common mechanism. This is further supported by our finding that cells from blast cell colonies grown in the presence of a combination of any one of the synergistic factors with IL-3 replate with higher efficiency and yield more multilineage secondary colonies than those from colonies grown in IL-3 alone. These findings provide further evidence that IL-1, IL-6, and G- CSF serve to integrate the immediate host responses to infection through augmentation of effector cells and antibody production as well as the longer term host responses by recruitment of dormant hemopoietic stem cells into active cell cycling.


Blood ◽  
1992 ◽  
Vol 80 (3) ◽  
pp. 609-616 ◽  
Author(s):  
GM Segal ◽  
TD Smith ◽  
MC Heinrich ◽  
FS Ey ◽  
GC Bagby

Abstract Antisense oligodeoxynucleotides (ODNs) have been used to effect the specific inhibition of cellular gene expression. We have evaluated the application of this approach to the inhibition of interleukin-1 (IL-1)- induced granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) expression in cultured human umbilical vein endothelial cells. Antisense ODNs or control ODNs (sense ODNs or missense ODNs containing random base substitutions) were added to cultures of endothelial cells, the cells were induced with IL- 1 alpha, and the conditioned media were assayed for GM-CSF and G-CSF by quantitative bioassays and for immunoreactive GM-CSF by enzyme immunoassay. Antisense ODNs complementary to the first 15 or 18 bases of the translation start sites of GM-CSF or G-CSF mRNAs inhibited, in a concentration-dependent fashion, the IL-1-stimulated expression of the corresponding factor, but did not affect expression of the other factor. Control ODNs did not affect GM-CSF or G-CSF expression. Exposure to a GM-CSF antisense ODN, but not a control ODN, substantially reduced cytoplasmic GM-CSF mRNA levels in IL-1-stimulated endothelial cells. Neither ODN affected levels of endothelial leukocyte adhesion molecule (ELAM)1 or glyceraldehyde-3-phosphate dehydrogenase mRNAs. We conclude that antisense ODNs complementary to the translation start sites of GM-CSF or G-CSF mRNAs inhibit expression of the corresponding factor in a sequence-specific fashion and this effect is mediated, at least in part, by reduction in the cytoplasmic level of the targeted mRNA. Moreover, IL-1-induced GM-CSF or G-CSF expression does not depend on expression of the other factor.


Sign in / Sign up

Export Citation Format

Share Document