scholarly journals The role of Human Papilloma Virus (HPV) vaccination in the prevention of anal cancer in individuals with Human Immunodeficiency Virus-1 (HIV-1) infection

2013 ◽  
Vol 1 (2) ◽  
pp. 81-92 ◽  
Author(s):  
Luis F. Barroso
Author(s):  
José G. Dekker ◽  
Bep Klaver ◽  
Ben Berkhout ◽  
Atze T. Das

With interest we read the Letter to the Editor of Wei and Sluis-Cremer about the role of human immunodeficiency virus 1 (HIV-1) 3’polypurine tract (3’PPT) mutations in dolutegravir (DTG) resistance 1.…


Author(s):  
Naomi Morka ◽  
Joseph M. Norris ◽  
Mark Emberton ◽  
Daniel Kelly

AbstractProstate cancer affects a significant proportion of men worldwide. Evidence from genetic and clinical studies suggests that there may be a causal association between prostate cancer and the human papilloma virus (HPV). As HPV is a vaccine-preventable pathogen, the possibility of a role in prostate cancer causation may reinforce the importance of effective HPV vaccination campaigns. This is of particular relevance in light of the COVID-19 pandemic, which may have considerable effects on HPV vaccine uptake and distribution.


Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 446
Author(s):  
Kevin M. Rose ◽  
Stephanie J. Spada ◽  
Rebecca Broeckel ◽  
Kristin L. McNally ◽  
Vanessa M. Hirsch ◽  
...  

An evolutionary arms race has been ongoing between retroviruses and their primate hosts for millions of years. Within the last century, a zoonotic transmission introduced the Human Immunodeficiency Virus (HIV-1), a retrovirus, to the human population that has claimed the lives of millions of individuals and is still infecting over a million people every year. To counteract retroviruses such as this, primates including humans have evolved an innate immune sensor for the retroviral capsid lattice known as TRIM5α. Although the molecular basis for its ability to restrict retroviruses is debated, it is currently accepted that TRIM5α forms higher-order assemblies around the incoming retroviral capsid that are not only disruptive for the virus lifecycle, but also trigger the activation of an antiviral state. More recently, it was discovered that TRIM5α restriction is broader than previously thought because it restricts not only the human retroelement LINE-1, but also the tick-borne flaviviruses, an emergent group of RNA viruses that have vastly different strategies for replication compared to retroviruses. This review focuses on the underlying mechanisms of TRIM5α-mediated restriction of retroelements and flaviviruses and how they differ from the more widely known ability of TRIM5α to restrict retroviruses.


2011 ◽  
Vol 72 (3) ◽  
pp. 207-212 ◽  
Author(s):  
P.A. Gourraud ◽  
A. Karaouni ◽  
J.M. Woo ◽  
T. Schmidt ◽  
J.R. Oksenberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document