scholarly journals Cervical Spinal Cord Atrophy can be Accurately Quantified Using Head Images

2022 ◽  
Vol 8 (1) ◽  
pp. 205521732110707
Author(s):  
Kamyar Taheri ◽  
Irene M Vavasour ◽  
Shawna Abel ◽  
Lisa Eunyoung Lee ◽  
Poljanka Johnson ◽  
...  

Background Spinal cord atrophy provides a clinically relevant metric for monitoring MS. However, the spinal cord is imaged far less frequently than brain due to artefacts and acquisition time, whereas MRI of the brain is routinely performed. Objective To validate spinal cord cross-sectional area measurements from routine 3DT1 whole-brain MRI versus those from dedicated cord MRI in healthy controls and people with MS. Methods We calculated cross-sectional area at C1 and C2/3 using T2*-weighted spinal cord images and 3DT1 brain images, for 28 healthy controls and 73 people with MS. Correlations for both groups were assessed between: (1) C1 and C2/3 using cord images; (2) C1 from brain and C1 from cord; and (3) C1 from brain and C2/3 from cord. Results and Conclusion C1 and C2/3 from cord were strongly correlated in controls ( r = 0.94, p<0.0001) and MS ( r = 0.85, p<0.0001). There was strong agreement between C1 from brain and C2/3 from cord in controls ( r = 0.84, p<0.0001) and MS ( r = 0.81, p<0.0001). This supports the use of C1 cross-sectional area calculated from brain imaging as a surrogate for the traditional C2/3 cross-sectional area measure for spinal cord atrophy.

Neurology ◽  
2018 ◽  
Vol 90 (8) ◽  
pp. e707-e716 ◽  
Author(s):  
Federica Agosta ◽  
Edoardo Gioele Spinelli ◽  
Ivan V. Marjanovic ◽  
Zorica Stevic ◽  
Elisabetta Pagani ◽  
...  

ObjectiveTo explore structural and functional changes of the brain and cervical cord in patients with amyotrophic lateral sclerosis (ALS) due to mutation in the superoxide dismutase (SOD1) gene compared with sporadic ALS.MethodsTwenty patients with SOD1 ALS, 11 with sporadic ALS, and 33 healthy controls underwent clinical evaluation and brain MRI. Cortical thickness analysis, diffusion tensor MRI of the corticospinal tracts (CST) and corpus callosum, and resting-state functional connectivity were performed. Patients with ALS also underwent cervical cord MRI to evaluate cord cross-sectional area and magnetization transfer ratio (MTR).ResultsPatients with SOD1 ALS showed longer disease duration and slower rate of functional decline relative to those with sporadic ALS. No cortical thickness abnormalities were found in patients with ALS compared with controls. Fractional anisotropy showed that sporadic ALS patients had significant CST damage relative to both healthy controls (p = 0.001−0.02) and SOD1-related ALS (p = 0.05), although the latter showed alterations that were intermediate between controls and sporadic ALS. Functional hyperconnectivity of the motor cortex in the sensorimotor network was observed in patients with sporadic ALS relative to controls. Conversely, patients with SOD1 ALS showed lower cord cross-sectional area along the whole cervical cord relative to those with sporadic ALS (p < 0.001). No cord MTR differences were found between patient groups.ConclusionsPatients with SOD1 ALS showed cervical cord atrophy relative to those with sporadic ALS and a relative preservation of brain motor structural and functional networks. Neurodegeneration in SOD1 ALS is likely to occur primarily in the spinal cord. An objective and accurate estimate of spinal cord damage has potential in the future assessment of preventive SOD1 ALS therapies.


2021 ◽  
Author(s):  
Sandrine Bedard ◽  
Julien Cohen-Adad

Spinal cord cross-sectional area (CSA) is a relevant biomarker to assess spinal cord atrophy in various neurodegenerative diseases. However, the considerable inter-subject variability among healthy participants currently limits its usage. Previous studies explored factors contributing to the variability, yet the normalization models were based on a relatively limited number of participants (typically < 300 participants), required manual intervention, and were not implemented in an open-access comprehensive analysis pipeline. Another limitation is related to the imprecise prediction of the spinal levels when using vertebral levels as a reference; a question never addressed before in the search for a normalization method. In this study we implemented a method to measure CSA automatically from a spatial reference based on the central nervous system (the pontomedullary junction, PMJ), we investigated various factors to explain variability, and we developed normalization strategies on a large cohort (N=804). Cervical spinal cord CSA was computed on T1w MRI scans for 804 participants from the UK Biobank database. In addition to computing cross-sectional at the C2-C3 vertebral disc, it was also measured at 64 mm caudal from the PMJ. The effect of various biological, demographic and anatomical factors was explored by computing Pearson's correlation coefficients. A stepwise linear regression found significant predictors; the coefficients of the best fit model were used to normalize CSA. The correlation between CSA measured at C2-C3 and using the PMJ was y = 0.98x + 1.78 (R2 = 0.97). The best normalization model included thalamus volume, brain volume, sex and interaction between brain volume and sex. With this model, the coefficient of variation went down from 10.09% (without normalization) to 8.59%, a reduction of 14.85%. In this study we identified factors explaining inter-subject variability of spinal cord CSA over a large cohort of participants, and developed a normalization model to reduce the variability. We implemented an approach, based on the PMJ, to measure CSA to overcome limitations associated with the vertebral reference. This approach warrants further validation, especially in longitudinal cohorts. The PMJ-based method and normalization models are readily available in the Spinal Cord Toolbox.


2021 ◽  
Vol 12 ◽  
Author(s):  
Carsten Lukas ◽  
Barbara Bellenberg ◽  
Ferran Prados ◽  
Paola Valsasina ◽  
Katrin Parmar ◽  
...  

Background: Considerable spinal cord (SC) atrophy occurs in multiple sclerosis (MS). While MRI-based techniques for SC cross-sectional area (CSA) quantification have improved over time, there is no common agreement on whether to measure at single vertebral levels or across larger regions and whether upper SC CSA can be reliably measured from brain images.Aim: To compare in a multicenter setting three CSA measurement methods in terms of repeatability at different anatomical levels. To analyze the agreement between measurements performed on the cervical cord and on brain MRI.Method: One healthy volunteer was scanned three times on the same day in six sites (three scanner vendors) using a 3T MRI protocol including sagittal 3D T1-weighted imaging of the brain (covering the upper cervical cord) and of the SC. Images were analyzed using two semiautomated methods [NeuroQLab (NQL) and the Active Surface Model (ASM)] and the fully automated Spinal Cord Toolbox (SCT) on different vertebral levels (C1–C2; C2/3) on SC and brain images and the entire cervical cord (C1–C7) on SC images only.Results: CSA estimates were significantly smaller using SCT compared to NQL and ASM (p &lt; 0.001), regardless of the cord level. Inter-scanner repeatability was best in C1–C7: coefficients of variation for NQL, ASM, and SCT: 0.4, 0.6, and 1.0%, respectively. CSAs estimated in brain MRI were slightly lower than in SC MRI (all p ≤ 0.006 at the C1–C2 level). Despite protocol harmonization between the centers with regard to image resolution and use of high-contrast 3D T1-weighted sequences, the variability of CSA was partly scanner dependent probably due to differences in scanner geometry, coil design, and details of the MRI parameter settings.Conclusion: For CSA quantification, dedicated isotropic SC MRI should be acquired, which yielded best repeatability in the entire cervical cord. In the upper part of the cervical cord, use of brain MRI scans entailed only a minor loss of CSA repeatability compared to SC MRI. Due to systematic differences between scanners and the CSA quantification software, both should be kept constant within a study. The MRI dataset of this study is available publicly to test new analysis approaches.


2020 ◽  
Author(s):  
Zhou Run-tian ◽  
Zhao Yi-bo ◽  
Lu Xiang-dong ◽  
Zhao Xiao-feng ◽  
Wang Xiao-nan ◽  
...  

Abstract Backgrounds: Cervical vertebral dome expansion laminoplasty is a new surgical method for the treatment of cervical spondylosis. We analyzed correlations between the selection of microtitanium plates with different specifications for use in a cervical vertebral dome expansion laminoplasty to establish guidance for the selection of suitable microtitanium plates.Methods: Sixteen patients that underwent the new, full lamina posterior spinal canal enlargement with a cervical spinal stenosis angioplasty procedure for treatment of their cervical spinal cords were recruited at our hospital. From February 2017-September 2018, medical records confirmed that all patients underwent cervical CT and MRI tests pre- and postsurgery. The anteroposterior diameter of the spinal canal, changes in the cross-sectional area of the spinal canal, and the pre- and postsurgery distance of the cervical spinal cord after applying microtitanium plates with different lengths were measured by Mimics version 17.0 software. A statistical regression and correlation analysis of relevant specification parameters of the microtitanium plate was then studied.Results: As the size of the microtitanium plate increased, we found that the cross-sectional area of cervical spinal canal and distance between the descendants of the lamina and the distance of cervical spinal cord concordantly increased. The regression equation associated with sagittal diameter, cross-sectional area, and posterior movement distance of the cervical spinal cord was obtained.Conclusions: The use of the corresponding regression equations enabled the prediction of the cervical spinal canal parameters and posterior movement distance of the cervical spinal cord when adopting different specifications of the microtitanium plate for different segments of the cervical vertebrae. This analysis guided the selection of microtitanium plates with appropriate specifications for different cervical vertebrae in a cervical vertebral dome expansion laminoplasty.


2008 ◽  
Vol 109 (6) ◽  
pp. 1148-1154 ◽  
Author(s):  
Jin-Yul Lee ◽  
Dah-Luen Huang ◽  
Richard Keep ◽  
Oren Sagher

Object Cervical spinal cord stimulation (SCS) increases global cerebral blood flow (CBF) and ameliorates cerebral ischemia according to a number of experimental models as well as some anecdotal reports in humans. Nonetheless, such stimulation has not been systematically applied for use in cerebral vasospasm. In the present study the authors examined the effect of cervical SCS on cerebral vasoconstriction in a double-hemorrhage model in rats. Methods Subarachnoid hemorrhage (SAH) was induced with 2 blood injections through an indwelling catheter in the cisterna magna. Spinal cord stimulation was applied 90 minutes after induction of the second SAH (Day 0) or on Day 5 post-SAH. Measurements of the basilar artery (BA) diameter and cross-sectional area and regional CBF (using laser Doppler flowmetry and 14C-radiolabeled N-isopropyl-p-iodoamphetamine hydrochloride) were obtained and compared between SAH and sham-operated control rats that did not receive SCS. Results At Day 0 after SAH, there were slight nonsignificant decreases in BA diameter and cross-sectional area (89 ± 3% and 81 ± 4%, respectively, of that in controls) in no-SCS rats. At this time point, BA diameter and crosssectional area were slightly increased (116 ± 6% and 132 ± 9%, respectively, compared with controls, p < 0.001) in SCS-treated rats. On Day 5 after SAH, no-SCS rats had marked decreases in BA diameter and cross-sectional area (64 ± 3% and 39 ± 4%, respectively, compared with controls, p < 0.001) and corrugation of the vessel wall. These changes were reversed in rats that had received SCS (diameter, 110 ± 9% of controls; area, 106 ± 4% of controls; p < 0.001). Subarachnoid hemorrhage reduced CBF at Days 0 and 5 post-SAH, and SCS increased flows at both time points, particularly in regions supplied by the middle cerebral artery. Conclusions Data in this study showed that SCS can reverse BA constriction and improve global CBF in this SAH model. Spinal cord stimulation may represent a useful adjunct in the treatment of vasospasm.


2020 ◽  
Vol 30 (5) ◽  
pp. 598-602
Author(s):  
Nico Papinutto ◽  
Christian Cordano ◽  
Carlo Asteggiano ◽  
Eduardo Caverzasi ◽  
Maria Luisa Mandelli ◽  
...  

2021 ◽  
Vol 94 (1121) ◽  
pp. 20200173
Author(s):  
Shamrendra Narayan ◽  
Amit Goel ◽  
Ajai Kumar Singh ◽  
Anup Kumar Thacker ◽  
Neha Singh ◽  
...  

Objectives: The aim of this observational study was ultrasound evaluation of peripheral nerves cross-sectional area (CSA) in subjects with probable diabetic peripheral sensorimotor neuropathy (DPN). CSA was analyzed with reference to clinical and nerve conduction study’s (NCS) parameters for early diagnosis and pattern of involvement. Methods: A total of 50 patients with probable DPN due to Type 2 diabetes and 50 age-matched healthy controls underwent sonographic examinations of ulnar nerve at the lower arm, median nerve proximal to carpal tunnel, the common peroneal nerve proximal to fibular head, tibial nerve proximal to the tarsal tunnel, and sural nerve at lower third leg. Results: CSA was increased in cases of DPN as compared to healthy controls. Area changes were more marked with demyelinating pattern. Probable DPN cases with normal NCS had significantly higher number of peripheral nerves showing increased CSA as compared to healthy control. A cut-off of >4 nerve thickening showed a sensitivity of 86 %, and specificity of 56%. The neuropathy pattern in the lower limb was axonal, whereas in the upper limb, it was demyelinating with the majority showing sonographic feature of associated compressive neuropathy. Conclusion: There is an increase in CSA of peripheral nerve in diabetic patients. It can be used as a morphological marker for classifying DPN with changes being picked up earlier to NCS abnormality. Clinical neurological presentation in probable DPN can also be due to compressive neuropathy in early phases, and ultrasound can be a useful tool. Advances in knowledge: Early pick up of DPN cases shall be useful for early therapy and motivating the patients to actively participate in the treatment. Morphological changes on ultrasonography precedes the electrodiagnostic change in DPN. Symptoms of DPN is not only due to metabolic changes but also compressive neuropathy.


Sign in / Sign up

Export Citation Format

Share Document