scholarly journals Free-Text Documentation of Dementia Symptoms in Home Healthcare: A Natural Language Processing Study

2020 ◽  
Vol 6 ◽  
pp. 233372142095986
Author(s):  
Maxim Topaz ◽  
Victoria Adams ◽  
Paula Wilson ◽  
Kyungmi Woo ◽  
Miriam Ryvicker

Background: Little is known about symptom documentation related to Alzheimer’s disease and related dementias (ADRD) by home healthcare (HHC) clinicians. Objective: This study: (1) developed a natural language processing (NLP) algorithm that identifies common neuropsychiatric symptoms of ADRD in HHC free-text clinical notes; (2) described symptom clusters and hospitalization or emergency department (ED) visit rates for patients with and without these symptoms. Method: We examined a corpus of −2.6 million free-text notes for 112,237 HHC episodes among 89,459 patients admitted to a non-profit HHC agency for post-acute care with any diagnosis. We used NLP software (NimbleMiner) to construct indicators of six neuropsychiatric symptoms. Structured HHC assessment data were used to identify known ADRD diagnoses and construct measures of hospitalization/ED use during HHC. Results: Neuropsychiatric symptoms were documented for 40% of episodes. Common clusters included impaired memory, anxiety and/or depressed mood. One in three episodes without an ADRD diagnosis had documented symptoms. Hospitalization/ED rates increased with one or more symptoms present. Conclusion: HHC providers should examine episodes with neuropsychiatric symptoms but no ADRD diagnoses to determine whether ADRD diagnosis was missed or to recommend ADRD evaluation. NLP-generated symptom indicators can help to identify high-risk patients for targeted interventions.

2021 ◽  
Author(s):  
Sena Chae ◽  
Jiyoun Song ◽  
Marietta Ojo ◽  
Maxim Topaz

The goal of this natural language processing (NLP) study was to identify patients in home healthcare with heart failure symptoms and poor self-management (SM). The preliminary lists of symptoms and poor SM status were identified, NLP algorithms were used to refine the lists, and NLP performance was evaluated using 2.3 million home healthcare clinical notes. The overall precision to identify patients with heart failure symptoms and poor SM status was 0.86. The feasibility of methods was demonstrated to identify patients with heart failure symptoms and poor SM documented in home healthcare notes. This study facilitates utilizing key symptom information and patients’ SM status from unstructured data in electronic health records. The results of this study can be applied to better individualize symptom management to support heart failure patients’ quality-of-life.


2021 ◽  
pp. 379-393
Author(s):  
Jiaming Zeng ◽  
Imon Banerjee ◽  
A. Solomon Henry ◽  
Douglas J. Wood ◽  
Ross D. Shachter ◽  
...  

PURPOSE Knowing the treatments administered to patients with cancer is important for treatment planning and correlating treatment patterns with outcomes for personalized medicine study. However, existing methods to identify treatments are often lacking. We develop a natural language processing approach with structured electronic medical records and unstructured clinical notes to identify the initial treatment administered to patients with cancer. METHODS We used a total number of 4,412 patients with 483,782 clinical notes from the Stanford Cancer Institute Research Database containing patients with nonmetastatic prostate, oropharynx, and esophagus cancer. We trained treatment identification models for each cancer type separately and compared performance of using only structured, only unstructured ( bag-of-words, doc2vec, fasttext), and combinations of both ( structured + bow, structured + doc2vec, structured + fasttext). We optimized the identification model among five machine learning methods (logistic regression, multilayer perceptrons, random forest, support vector machines, and stochastic gradient boosting). The treatment information recorded in the cancer registry is the gold standard and compares our methods to an identification baseline with billing codes. RESULTS For prostate cancer, we achieved an f1-score of 0.99 (95% CI, 0.97 to 1.00) for radiation and 1.00 (95% CI, 0.99 to 1.00) for surgery using structured + doc2vec. For oropharynx cancer, we achieved an f1-score of 0.78 (95% CI, 0.58 to 0.93) for chemoradiation and 0.83 (95% CI, 0.69 to 0.95) for surgery using doc2vec. For esophagus cancer, we achieved an f1-score of 1.0 (95% CI, 1.0 to 1.0) for both chemoradiation and surgery using all combinations of structured and unstructured data. We found that employing the free-text clinical notes outperforms using the billing codes or only structured data for all three cancer types. CONCLUSION Our results show that treatment identification using free-text clinical notes greatly improves upon the performance using billing codes and simple structured data. The approach can be used for treatment cohort identification and adapted for longitudinal cancer treatment identification.


Author(s):  
Margot Yann ◽  
Therese Stukel ◽  
Liisa Jaakkimainen ◽  
Karen Tu

IntroductionA number of challenges exist in analyzing unstructured free text data in electronic medical records (EMRs). EMR text are difficult to represent and model due to their high dimensionality, heterogeneity, sparsity, incompleteness, random errors and the presence of noise. Objectives and ApproachStandard Natural Language Processing (NLP) tools make errors when applied to clinical notes due to physician use of unconventional language, involving polysemy, abbreviations, ambiguity, misspelling, variations, and negation. This paper presents a novel NLP framework, “Clinical Learning On Natural Expression” (CLONE), to automatically learn from a large primary care EMR database, analyzing free text clinical notes from primary care practices. CLONE’s predictive clinical models using text mining and neural network approach to extract features to identify patterns. To demonstrate effectiveness, we evaluate CLONE’s ability in a case study to identify patients with a specific chronic condition: congestive heart failure (CHF). ResultsA random selected sample of 7500 patients from Electronic Medical Record Administrative data Linked Database (EMRALD) is used. In this dataset, each patient’s medical chart includes a reference standard, manually reviewed by medical practitioners. Prevalence of CHF is approximately 2%. The low prevalence leads to another challenging problem in machine learning: imbalanced datasets. After pre-processing, we build deep learning models to represent and extract important medical information from free text to identify CHF patients through analyzing patient charts. We evaluated the effectiveness of CLONE by comparing the predicted labels with the standard references on a holdout test dataset. Comparing it with a number of alternative algorithms, we improve the overall accuracy to over 90% on a test dataset. Conclusion/ImplicationsAs the role of NLP in EMR data expands, the CLONE natural language processing framework can lead to substantial reduction in manual processing, while improving predictive accuracy.


2018 ◽  
Author(s):  
Tao Chen ◽  
Mark Dredze ◽  
Jonathan P Weiner ◽  
Leilani Hernandez ◽  
Joe Kimura ◽  
...  

BACKGROUND Geriatric syndromes in older adults are associated with adverse outcomes. However, despite being reported in clinical notes, these syndromes are often poorly captured by diagnostic codes in the structured fields of electronic health records (EHRs) or administrative records. OBJECTIVE We aim to automatically determine if a patient has any geriatric syndromes by mining the free text of associated EHR clinical notes. We assessed which statistical natural language processing (NLP) techniques are most effective. METHODS We applied conditional random fields (CRFs), a widely used machine learning algorithm, to identify each of 10 geriatric syndrome constructs in a clinical note. We assessed three sets of features and attributes for CRF operations: a base set, enhanced token, and contextual features. We trained the CRF on 3901 manually annotated notes from 85 patients, tuned the CRF on a validation set of 50 patients, and evaluated it on 50 held-out test patients. These notes were from a group of US Medicare patients over 65 years of age enrolled in a Medicare Advantage Health Maintenance Organization and cared for by a large group practice in Massachusetts. RESULTS A final feature set was formed through comprehensive feature ablation experiments. The final CRF model performed well at patient-level determination (macroaverage F1=0.834, microaverage F1=0.851); however, performance varied by construct. For example, at phrase-partial evaluation, the CRF model worked well on constructs such as absence of fecal control (F1=0.857) and vision impairment (F1=0.798) but poorly on malnutrition (F1=0.155), weight loss (F1=0.394), and severe urinary control issues (F1=0.532). Errors were primarily due to previously unobserved words (ie, out-of-vocabulary) and a lack of context. CONCLUSIONS This study shows that statistical NLP can be used to identify geriatric syndromes from EHR-extracted clinical notes. This creates new opportunities to identify patients with geriatric syndromes and study their health outcomes.


Author(s):  
Mario Jojoa Acosta ◽  
Gema Castillo-Sánchez ◽  
Begonya Garcia-Zapirain ◽  
Isabel de la Torre Díez ◽  
Manuel Franco-Martín

The use of artificial intelligence in health care has grown quickly. In this sense, we present our work related to the application of Natural Language Processing techniques, as a tool to analyze the sentiment perception of users who answered two questions from the CSQ-8 questionnaires with raw Spanish free-text. Their responses are related to mindfulness, which is a novel technique used to control stress and anxiety caused by different factors in daily life. As such, we proposed an online course where this method was applied in order to improve the quality of life of health care professionals in COVID 19 pandemic times. We also carried out an evaluation of the satisfaction level of the participants involved, with a view to establishing strategies to improve future experiences. To automatically perform this task, we used Natural Language Processing (NLP) models such as swivel embedding, neural networks, and transfer learning, so as to classify the inputs into the following three categories: negative, neutral, and positive. Due to the limited amount of data available—86 registers for the first and 68 for the second—transfer learning techniques were required. The length of the text had no limit from the user’s standpoint, and our approach attained a maximum accuracy of 93.02% and 90.53%, respectively, based on ground truth labeled by three experts. Finally, we proposed a complementary analysis, using computer graphic text representation based on word frequency, to help researchers identify relevant information about the opinions with an objective approach to sentiment. The main conclusion drawn from this work is that the application of NLP techniques in small amounts of data using transfer learning is able to obtain enough accuracy in sentiment analysis and text classification stages.


2021 ◽  
Vol 28 (1) ◽  
pp. e100262
Author(s):  
Mustafa Khanbhai ◽  
Patrick Anyadi ◽  
Joshua Symons ◽  
Kelsey Flott ◽  
Ara Darzi ◽  
...  

ObjectivesUnstructured free-text patient feedback contains rich information, and analysing these data manually would require a lot of personnel resources which are not available in most healthcare organisations.To undertake a systematic review of the literature on the use of natural language processing (NLP) and machine learning (ML) to process and analyse free-text patient experience data.MethodsDatabases were systematically searched to identify articles published between January 2000 and December 2019 examining NLP to analyse free-text patient feedback. Due to the heterogeneous nature of the studies, a narrative synthesis was deemed most appropriate. Data related to the study purpose, corpus, methodology, performance metrics and indicators of quality were recorded.ResultsNineteen articles were included. The majority (80%) of studies applied language analysis techniques on patient feedback from social media sites (unsolicited) followed by structured surveys (solicited). Supervised learning was frequently used (n=9), followed by unsupervised (n=6) and semisupervised (n=3). Comments extracted from social media were analysed using an unsupervised approach, and free-text comments held within structured surveys were analysed using a supervised approach. Reported performance metrics included the precision, recall and F-measure, with support vector machine and Naïve Bayes being the best performing ML classifiers.ConclusionNLP and ML have emerged as an important tool for processing unstructured free text. Both supervised and unsupervised approaches have their role depending on the data source. With the advancement of data analysis tools, these techniques may be useful to healthcare organisations to generate insight from the volumes of unstructured free-text data.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 183-183
Author(s):  
Javad Razjouyan ◽  
Jennifer Freytag ◽  
Edward Odom ◽  
Lilian Dindo ◽  
Aanand Naik

Abstract Patient Priorities Care (PPC) is a model of care that aligns health care recommendations with priorities of older adults with multiple chronic conditions. Social workers (SW), after online training, document PPC in the patient’s electronic health record (EHR). Our goal is to identify free-text notes with PPC language using a natural language processing (NLP) model and to measure PPC adoption and effect on long term services and support (LTSS) use. Free-text notes from the EHR produced by trained SWs passed through a hybrid NLP model that utilized rule-based and statistical machine learning. NLP accuracy was validated against chart review. Patients who received PPC were propensity matched with patients not receiving PPC (control) on age, gender, BMI, Charlson comorbidity index, facility and SW. The change in LTSS utilization 6-month intervals were compared by groups with univariate analysis. Chart review indicated that 491 notes out of 689 had PPC language and the NLP model reached to precision of 0.85, a recall of 0.90, an F1 of 0.87, and an accuracy of 0.91. Within group analysis shows that intervention group used LTSS 1.8 times more in the 6 months after the encounter compared to 6 months prior. Between group analysis shows that intervention group has significant higher number of LTSS utilization (p=0.012). An automated NLP model can be used to reliably measure the adaptation of PPC by SW. PPC seems to encourage use of LTSS that may delay time to long term care placement.


2021 ◽  
pp. 1063293X2098297
Author(s):  
Ivar Örn Arnarsson ◽  
Otto Frost ◽  
Emil Gustavsson ◽  
Mats Jirstrand ◽  
Johan Malmqvist

Product development companies collect data in form of Engineering Change Requests for logged design issues, tests, and product iterations. These documents are rich in unstructured data (e.g. free text). Previous research affirms that product developers find that current IT systems lack capabilities to accurately retrieve relevant documents with unstructured data. In this research, we demonstrate a method using Natural Language Processing and document clustering algorithms to find structurally or contextually related documents from databases containing Engineering Change Request documents. The aim is to radically decrease the time needed to effectively search for related engineering documents, organize search results, and create labeled clusters from these documents by utilizing Natural Language Processing algorithms. A domain knowledge expert at the case company evaluated the results and confirmed that the algorithms we applied managed to find relevant document clusters given the queries tested.


Sign in / Sign up

Export Citation Format

Share Document