Study, analysis, and characterization of ultra-precision diamond tools for single-point diamond turning

2020 ◽  
pp. 251659842096533
Author(s):  
RamaGopal V. Sarepaka ◽  
Sivasakthi Balan ◽  
Somaiah Doodala ◽  
Rakesh Singh Panwar ◽  
D. Rajendra Kotaria

In multiple applications of advanced instrumentation, single-point diamond turning (SPDT) is a popular and effective process to generate novel surfaces with nanometric surface roughness and sub-micron surface irregularities, albeit at a high cost. In SPDT, precision diamond tooling contributes significantly to the process cost escalation. Hence, for SPDT, it is vital to have an optimal precision diamond tool deployment. In this article, details of comprehensive precision diamond tool selection and tool characterization are discussed. Three makes of selected ultra-precision diamond (UPD) tools and standard diamond tools (of a global make), designated as CFT, are considered for this study. In this tool bench-marking exercise, the fabrication of Cu–Be alloy predesigned precision components (PDPCs) of a critical geometry is selected. UPD and CFT tools are deployed to fabricate (under similar machining-metrology conditions) the PDPCs. These diamond tools are evaluated in terms of the quality parameters (variation in radius of curvature, form error, and surface roughness) of the workpieces. Further, to explore the progressive wear of these tools, multiple machining cycles are conducted on these workpieces, and their quality parameters are analyzed. Thus, the precision diamond tools of three makes are benchmarked against the CFT tool. Based on the final outcome of this analysis, suitable recommendations are provided to precision diamond tool manufacturers to improve their product in terms of performance and optimized costs to meet the ever-growing tooling demands of the SPDT community.

2020 ◽  
pp. 251659842093974
Author(s):  
Ishan Anand Singh ◽  
Gopi Krishna S. ◽  
T. Narendra Reddy ◽  
Prakash Vinod

This research aims to establish a methodology for machining of toric lenses, using fast tool servo-assisted single point diamond turning and to assess the generated surface for its characteristics. Using the established mathematical model, toric surface is explained to understand the geometry and to generate the parameters required for fast tool servo machining. A toric surface with a major diameter of 18.93 mm and a minor diameter of 15.12 mm has been cut on the intelligent ultra-precision turning machine (iUPTM). The surface profile and surface roughness were measured. After analysing the measurement data of the machined surface, on two perpendicular axes of the toric lens, form accuracy of 0.49 µm peak-to-valley (PV), and surface roughness of 12 nm in Ra, 4–8 nm in Sa are obtained. From the experimental results obtained, it can be concluded that the proposed method is a reasonable alternative for manufacturing toric lens mould.


2013 ◽  
Vol 562-565 ◽  
pp. 147-151
Author(s):  
Guo Li ◽  
Yan Hua Huang ◽  
Wei Chao Tong ◽  
Guang Hui Yuan ◽  
Yang Tao ◽  
...  

Fast Ignition (FI) attracts much attention owing to its advantages. The fabrication of fast ignition targets is one of the key technologies in FI study. Based on the single point diamond turning (SPDT) technology, Diamond post-turning method is adopted in this paper for the fabrication of gold cone. It not only helps to reduce the end-effect of cone mandrel and consequently improve the coaxiality of internal and external cone surface, but also helps to improve the quality of cone surface and the wall thickness consistency. Besides, the processing parameter of diamond post-turning is experimentally studied in this paper for its effect on the cone surface roughness. According to results, the cone surface roughness is Ra 9.21nm, the wall thickness consistency is 3μm and the cone end surface roughness is Ra5.72nm。


2014 ◽  
Vol 887-888 ◽  
pp. 1236-1239
Author(s):  
Wang Hao ◽  
Yu Zhang ◽  
Qi Ming Xie

Single-point diamond turning (SPDT) is a machining process making use of a monocrystal diamond tool which possesses nanometric edge sharpness, form reproducibility and wear resistance. The process is capable of producing components with micrometre to submicrometre form accuracy and surface roughness in the nanometre range. The cutting parameters that can make an effect on surface finish and form accuracy of SPDT such as spindle speedfeed ratedepth of cut and so on.


2016 ◽  
Vol 851 ◽  
pp. 186-190 ◽  
Author(s):  
Fei Xie ◽  
Zhu Ji Jin ◽  
Xiao Guang Guo ◽  
Shuang Ji Shi

Owing to the extremely rapid tool wear, ultra-precision manufacturing of mold steel through single point diamond turning (SPDT) operation becomes a challenging task. Molecular dynamics (MD) simulation is an appropriate tool to study nanoscale processes occurring at the femtosecond/picosecond timescale. The wear mechanism of the diamond tool is discussed by means of molecular dynamics in which atomic position variation, temperature fluctuations were involved. According to the analysis results, iron atoms have unpaired d electrons, these iron atoms may connect with diamond carbon atoms through chemical bonds which are the driving force to the diamond removal and making diamond convert into graphite. The simulation results demonstrated that, it is possible to mitigate the wear of diamond tools effectively, if those bindings between unpaired d electrons and diamond carbon atoms of the tool can be under control.


2020 ◽  
Vol 14 (4) ◽  
pp. 654-664 ◽  
Author(s):  
Kodai Nagayama ◽  
◽  
Jiwang Yan

In ultra-precision diamond turning of freeform optics, it is necessary to obtain submicron-level form accuracy with high efficiency. In this study, we proposed a new method for the quick measurement and compensation of tool contour errors to improve the form accuracy of the workpiece. In this method, the nanometer-scale contour error of a diamond tool is quickly and precisely measured using a white light interferometer and then compensated for, before machining. Results showed that the contour of a diamond tool was measured with an error less than 0.05 μm peak-to-valley (P-V) and the feasibility of error compensation was verified through cutting experiments to create a paraboloid mirror and a microlens array. The form error decreased to 0.2 μm P-V regardless of the contour error of the diamond tools when cutting the paraboloid mirror, and that of the microlens array was reduced to 0.15 μm P-V during a single machining step.


Micromachines ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 573
Author(s):  
Zhang ◽  
Guo ◽  
Chen ◽  
Fu ◽  
Zhao

The surface generation mechanism of the Cu alloys in ultra-precision diamond turning is investigated by both simulation and experimental methods, where the effects of the cutting parameters on the surface characteristics are explored, including the workpiece spindle speed, the cutting depth, the feed rate and the nose radius of the diamond tool. To verify the built model, the cutting experiments are conducted at selected parameters, where the causes of the error between the simulation and the machining results are analyzed, including the effects of the materials microstructure and the diamond tool wear. In addition, the nanometric surface characteristics of the Cu alloys after the diamond turning are identified, including the finer scratching grooves caused by the tool wear, the formation of the surface burs and the adhesion of graphite. The results show that the built model can be basically used to predict the surface topography for the selection of the appropriate machining parameters in the ultra-precision diamond turning process.


Sign in / Sign up

Export Citation Format

Share Document