scholarly journals Effect of fixation on the amplification of nucleic acids from paraffin-embedded material by the polymerase chain reaction.

1991 ◽  
Vol 39 (3) ◽  
pp. 351-354 ◽  
Author(s):  
J Ben-Ezra ◽  
D A Johnson ◽  
J Rossi ◽  
N Cook ◽  
A Wu

Amplification of nucleic acids from paraffin-embedded material by the polymerase chain reaction (PCR) is increasingly being used to detect viral genomes and oncogene mutations. To determine the effect of fixation on the preservation of the nucleic acids, we fixed two randomly chosen fresh pathology specimens in formalin, B-5, Bouin's, Zenker's, ethanol, and Omnifix for 6, 24, 48, 72, and 168 hr (1 week), and then embedded the tissue in paraffin. Oligonucleotide primers specific for the cytoplasmic-beta-actin gene were chosen to span an intron such that amplification yielded a product of 250 BP for DNA and 154 BP for RNA. A single 6-microns section was cut from each paraffin block, deparaffinized, and then subjected to 30 rounds of amplification for either DNA or RNA. On amplifying DNA, consistent product was seen in the ethanol and Omnifix specimens up to 72 hr of fixation time, whereas variable product was seen with formalin or Zenker's fixation; all specimens fixed in Bouin's or B-5 were negative. On amplifying RNA, a product could be detected even after 1 week of fixation in ethanol or Omnifix, and after 48 hr in the formalin-fixed tissue. The Zenker's-fixed tissues gave variable results, and the Bouin's and B-5 tissues gave consistent results only after 6 hr of fixation. We therefore conclude that choice of fixative and fixation time are critical factors influencing the outcome of PCR amplification of nucleic acids from paraffin-embedded material.

1996 ◽  
Vol 44 (10) ◽  
pp. 1205-1207 ◽  
Author(s):  
A Dakhama ◽  
V Macek ◽  
J C Hogg ◽  
R G Hegele

The polymerase chain reaction (PCR) is a powerful method that allows enzymatic amplification of rate target nucleic acid sequences. It has been applied to the amplification of viral genomes from paraffin-embedded pathology specimens. However, interpretation of negative results requires amplification of a housekeeping gene such as beta-actin. In the present study we used specific oligonucleotide primers previously designed to amplify both the genomic DNA and the mRNA transcript from paraffin-embedded tissue. These products have predicted sizes of 250 BP and 154 BP, respectively, but our results showed that PCR amplification only (without reverse transcription) unexpectedly generated the 154-BP product. Further investigation of the nature of this product demonstrated that it originated from the amplification of DNA, not RNA. We conclude that the 154-BP product generated by these primers cannot be exclusively considered as beta-actin RNA product and should not be used to assess successful extraction of RNA, to ascertain its integrity, or to normalize for the total amount of RNA assayed by RT-PCR from paraffin-embedded tissue.


2011 ◽  
Vol 27 (3) ◽  
pp. 357-364
Author(s):  
B. T. Chia ◽  
S.-A. Yang ◽  
M.-Y. Cheng ◽  
C.-W. Lin ◽  
Y.-J. Yang

ABSTRACTIn this paper, the development of a portable polymerase chain reaction (PCR) device is presented. Integrating electromagnetic mini-actuators for bi-directional fluid transport, the proposed device, whose dimension is 67mm × 66mm × 25mm, can be fully operated with a 5V DC voltage. The device consists of four major parts: A disposable channel chip in which PCR mixture is manipulated and reacted, a heater chip which generates different temperature zones for PCR reaction, a linear actuator array for pumping PCR mixture, and a circuit module for controlling and driving the system. The advantages of the device include the rapid temperature responses associated with continuous-flow-type PCR devices, as well as the programmable thermal cycling associated with chamber-type PCR devices. The thermal characteristics are measured and discussed. PCR amplification is successfully performed for the 122 bp segment of MCF-7/adr cell line. Due to its small footprint, this self-contained system potentially can be employed for point-of-care (POC) applications.


Sign in / Sign up

Export Citation Format

Share Document