scholarly journals A novel in situ hybridization signal amplification method based on the deposition of biotinylated tyramine.

1995 ◽  
Vol 43 (4) ◽  
pp. 347-352 ◽  
Author(s):  
H M Kerstens ◽  
P J Poddighe ◽  
A G Hanselaar

For amplification of in situ hybridization (ISH) signals, we describe a method using catalyzed reporter deposition (CARD). This amplification method is based on the deposition of biotinylated tyramine (BT) at the location of the DNA probe. The BT precipitate can then visualized with fluorochrome- or enzyme-labeled avidin. Both for bright-field ISH (BRISH) and for fluorescence ISH (FISH), the detection limit was highly increased. This method is especially suitable for visualization of very weak ISH signals, such as those obtained by ISH using locus-specific DNA probes. Furthermore, CARD amplification of ISH signals (CARD-ISH) is highly sensitive, rapid, flexible, and easy to implement. Successful application of CARD-ISH with locus-specific DNA probes on histological and cytological samples may improve the determination of structural chromosomal aberrations in archival material.

2015 ◽  
Vol 51 (11) ◽  
pp. 2156-2158 ◽  
Author(s):  
Yi Xie ◽  
Xiaoyan Lin ◽  
Yishun Huang ◽  
Rujun Pan ◽  
Zhi Zhu ◽  
...  

Based on the protective properties of polydopamine nanospheres for DNA probes against nuclease digestion, we have developed a DNase I-assisted target recycling signal amplification method for highly sensitive and selective detection of miRNA.


2016 ◽  
Vol 52 (2) ◽  
pp. 370-373 ◽  
Author(s):  
Jin Huang ◽  
He Wang ◽  
Xiaohai Yang ◽  
Yanjing Yang ◽  
Ke Quan ◽  
...  

This strategy uses two fluorophore-labeled signal probes to generate a supersandwich product, which in turn generates numerous signal probes located at the target mRNA position, resulting in thein situfluorescence signal amplification.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Lenka Ulrychová ◽  
Pavel Ostašov ◽  
Marta Chanová ◽  
Michael Mareš ◽  
Martin Horn ◽  
...  

Abstract Background The blood flukes of genus Schistosoma are the causative agent of schistosomiasis, a parasitic disease that infects more than 200 million people worldwide. Proteases of schistosomes are involved in critical steps of host–parasite interactions and are promising therapeutic targets. We recently identified and characterized a group of S1 family Schistosoma mansoni serine proteases, including SmSP1 to SmSP5. Expression levels of some SmSPs in S. mansoni are low, and by standard genome sequencing technologies they are marginally detectable at the method threshold levels. Here, we report their spatial gene expression patterns in adult S. mansoni by the high-sensitivity localization assay. Methodology Highly sensitive fluorescence in situ RNA hybridization (FISH) was modified and used for the localization of mRNAs encoding individual SmSP proteases (including low-expressed SmSPs) in tissues of adult worms. High sensitivity was obtained due to specifically prepared tissue and probes in combination with the employment of a signal amplification approach. The assay method was validated by detecting the expression patterns of a set of relevant reference genes including SmCB1, SmPOP, SmTSP-2, and Sm29 with localization formerly determined by other techniques. Results FISH analysis revealed interesting expression patterns of SmSPs distributed in multiple tissues of S. mansoni adults. The expression patterns of individual SmSPs were distinct but in part overlapping and were consistent with existing transcriptome sequencing data. The exception were genes with significantly low expression, which were also localized in tissues where they had not previously been detected by RNA sequencing methods. In general, SmSPs were found in various tissues including reproductive organs, parenchymal cells, esophagus, and the tegumental surface. Conclusions The FISH-based assay provided spatial information about the expression of five SmSPs in adult S. mansoni females and males. This highly sensitive method allowed visualization of low-abundantly expressed genes that are below the detection limits of standard in situ hybridization or by RNA sequencing. Thus, this technical approach turned out to be suitable for sensitive localization studies and may also be applicable for other trematodes. The results suggest that SmSPs may play roles in diverse processes of the parasite. Certain SmSPs expressed at the surface may be involved in host–parasite interactions. Graphic abstract


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 197
Author(s):  
Meiqing Liu ◽  
Haoran Li ◽  
Yanwei Jia ◽  
Pui-In Mak ◽  
Rui P. Martins

The emergence of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a zoonotic pathogen, has led to the outbreak of coronavirus disease 2019 (COVID-19) pandemic and brought serious threats to public health worldwide. The gold standard method for SARS-CoV-2 detection requires both reverse transcription (RT) of the virus RNA to cDNA and then polymerase chain reaction (PCR) for the cDNA amplification, which involves multiple enzymes, multiple reactions and a complicated assay optimization process. Here, we developed a duplex-specific nuclease (DSN)-based signal amplification method for SARS-CoV-2 detection directly from the virus RNA utilizing two specific DNA probes. These specific DNA probes can hybridize to the target RNA at different locations in the nucleocapsid protein gene (N gene) of SARS-CoV-2 to form a DNA/RNA heteroduplex. DSN cleaves the DNA probe to release fluorescence, while leaving the RNA strand intact to be bound to another available probe molecule for further cleavage and fluorescent signal amplification. The optimized DSN amount, incubation temperature and incubation time were investigated in this work. Proof-of-principle SARS-CoV-2 detection was demonstrated with a detection sensitivity of 500 pM virus RNA. This simple, rapid, and direct RNA detection method is expected to provide a complementary method for the detection of viruses mutated at the PCR primer-binding regions for a more precise detection.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1819
Author(s):  
Tatyana Karamysheva ◽  
Svetlana Romanenko ◽  
Alexey Makunin ◽  
Marija Rajičić ◽  
Alexey Bogdanov ◽  
...  

The gene composition, function and evolution of B-chromosomes (Bs) have been actively discussed in recent years. However, the additional genomic elements are still enigmatic. One of Bs mysteries is their spatial organization in the interphase nucleus. It is known that heterochromatic compartments are not randomly localized in a nucleus. The purpose of this work was to study the organization and three-dimensional spatial arrangement of Bs in the interphase nucleus. Using microdissection of Bs and autosome centromeric heterochromatic regions of the yellow-necked mouse (Apodemus flavicollis) we obtained DNA probes for further two-dimensional (2D)- and three-dimensional (3D)- fluorescence in situ hybridization (FISH) studies. Simultaneous in situ hybridization of obtained here B-specific DNA probes and autosomal C-positive pericentromeric region-specific probes further corroborated the previously stated hypothesis about the pseudoautosomal origin of the additional chromosomes of this species. Analysis of the spatial organization of the Bs demonstrated the peripheral location of B-specific chromatin within the interphase nucleus and feasible contact with the nuclear envelope (similarly to pericentromeric regions of autosomes and sex chromosomes). It is assumed that such interaction is essential for the regulation of nuclear architecture. It also points out that Bs may follow the same mechanism as sex chromosomes to avoid a meiotic checkpoint.


Sign in / Sign up

Export Citation Format

Share Document