Macroscopic illustration of Zn evaporation during liquid phase sintering of Cu–28Zn prepared from prealloyed powder

2015 ◽  
Vol 58 (2) ◽  
pp. 91-94 ◽  
Author(s):  
Maziyar Azadbeh ◽  
Herbert Danninger ◽  
Ahad Mohammadzadeh ◽  
Christian Gierl-Mayer
Author(s):  
J. Drennan ◽  
R.H.J. Hannink ◽  
D.R. Clarke ◽  
T.M. Shaw

Magnesia partially stabilised zirconia (Mg-PSZ) ceramics are renowned for their excellent nechanical properties. These are effected by processing conditions and purity of starting materials. It has been previously shown that small additions of strontia (SrO) have the effect of removing the major contaminant, silica (SiO2).The mechanism by which this occurs is not fully understood but the strontia appears to form a very mobile liquid phase at the grain boundaries. As the sintering reaches the final stages the liquid phase is expelled to the surface of the ceramic. A series of experiments, to examine the behaviour of the liquid grain boundary phase, were designed to produce compositional gradients across the ceramic bodies. To achieve this, changes in both silica content and furnace atmosphere were implemented. Analytical electron microscope techniques were used to monitor the form and composition of the phases developed. This paper describes the results of our investigation and the presentation will discuss the work with reference to liquid phase sintering of ceramics in general.


Author(s):  
Mahesh Chandramouli

Magnetization reversal in sintered Fe-Nd-B, a complex, multiphase material, occurs by nucleation and growth of reverse domains making the isolation of the ferromagnetic Fe14Nd2B grains by other nonmagnetic phases crucial. The magnets used in this study were slightly rich in Nd (in comparison to Fe14Nd2B) to promote the formation of Nd-oxides at multigrain junctions and incorporated Dy80Al20 as a liquid phase sintering addition. Dy has been shown to increase the domain wall energy thus making nucleation more difficult while Al is thought to improve the wettability of the Nd-oxide phases.Bulk polished samples were examined in a JEOL 35CF scanning electron microscope (SEM) operated at 30keV equipped with a Be window energy dispersive spectrometer (EDS) detector in order to determine the phase distribution.


1986 ◽  
Vol 47 (C1) ◽  
pp. C1-441-C1-445
Author(s):  
E. KOSTIĆ ◽  
S. J. KISS ◽  
D. CEROVIĆ

2005 ◽  
Vol 96 (2) ◽  
pp. 141-147 ◽  
Author(s):  
Sung-Min Lee ◽  
Suk-Joong L. Kang

ChemInform ◽  
2010 ◽  
Vol 27 (32) ◽  
pp. no-no
Author(s):  
F. K. VAN DIJEN ◽  
E. MAYER

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3790
Author(s):  
Yongzheng Ji ◽  
Tsuyoshi Honma ◽  
Takayuki Komatsu

Sodium super ionic conductor (NASICON)-type Na3Zr2Si2PO12 (NZSP) with the advantages of the high ionic conductivity, stability and safety is one of the most famous solid-state electrolytes. NZSP, however, requires the high sintering temperature about 1200 °C and long sintering time in the conventional solid-state reaction (SSR) method. In this study, the liquid-phase sintering (LPS) method was applied to synthesize NZSP with the use of NaPO3 glass with a low glass transition temperature of 292 °C. The formation of NZSP was confirmed by X-ray diffraction analyses in the samples obtained by the LPS method for the mixture of Na2ZrSi2O7, ZrO2, and NaPO3 glass. The sample sintered at 1000 °C for 10 h exhibited a higher Na+ ion conductivity of 1.81 mS/cm at 100 °C and a lower activation energy of 0.18 eV compared with the samples prepared by the SSR method. It is proposed that a new LPE method is effective for the synthesis of NZSP and the NaPO3 glass has a great contribution to the Na+ diffusion at the grain boundaries.


Sign in / Sign up

Export Citation Format

Share Document