scholarly journals Synthesis and Na+ Ion Conductivity of Stoichiometric Na3Zr2Si2PO12 by Liquid-Phase Sintering with NaPO3 Glass

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3790
Author(s):  
Yongzheng Ji ◽  
Tsuyoshi Honma ◽  
Takayuki Komatsu

Sodium super ionic conductor (NASICON)-type Na3Zr2Si2PO12 (NZSP) with the advantages of the high ionic conductivity, stability and safety is one of the most famous solid-state electrolytes. NZSP, however, requires the high sintering temperature about 1200 °C and long sintering time in the conventional solid-state reaction (SSR) method. In this study, the liquid-phase sintering (LPS) method was applied to synthesize NZSP with the use of NaPO3 glass with a low glass transition temperature of 292 °C. The formation of NZSP was confirmed by X-ray diffraction analyses in the samples obtained by the LPS method for the mixture of Na2ZrSi2O7, ZrO2, and NaPO3 glass. The sample sintered at 1000 °C for 10 h exhibited a higher Na+ ion conductivity of 1.81 mS/cm at 100 °C and a lower activation energy of 0.18 eV compared with the samples prepared by the SSR method. It is proposed that a new LPE method is effective for the synthesis of NZSP and the NaPO3 glass has a great contribution to the Na+ diffusion at the grain boundaries.

2011 ◽  
Vol 284-286 ◽  
pp. 1460-1465
Author(s):  
Di Chen ◽  
Xiang Yun Deng ◽  
Jian Bao Li ◽  
Li Ming Wang ◽  
Xin Zheng Wu ◽  
...  

BaZr0.25Ti0.75O3(BZT) ceramics were prepared by conventional ceramic process at a relatively low sintering temperature and with an addition of Li2O as the liquid-phase sintering aid. X-ray diffraction characterized results showed that the main crystal phase of the samples with 1.0wt% Li2O additive sintered at 1050°C~1250°C for 4h presented perovskite structure. The dielectric properties of BZT ceramics have been investigated. The dielectric constant of 1.0wt% Li2O doped BZT sintered at 1150°C decreased, and the dielectric loss increased by 0.0012 compared with that of the pure BZT sintered at 1450°C.


2008 ◽  
Vol 55-57 ◽  
pp. 353-356
Author(s):  
Nawarat Wora-uaychai ◽  
Nuchthana Poolthong ◽  
Ruangdaj Tongsri

In this research, titanium carbide-nickel (TiC-Ni) composites, with tungsten carbide addition, were fabricated by using a powder metallurgy technique. The TiC-Ni mixtures containing between 0-15 wt. % tungsten carbide (WC), were compacted and then sintered at 1300°C and 1400°C, respectively. The phase formation and microstructure of the WC-added TiC-Ni composites have been investigated by X-ray diffraction and scanning electron microscopy techniques. Mechanical properties of these composites were assessed by an indentation technique. The X-ray diffraction patterns showed no evidence of tungsten rich phases in the sintered WC-added cermets. This indicates that during the sintering process, tungsten carbide particles were dissolved in metallic binder phase (Ni phase) via dissolution/re-precipitation process during liquid phase sintering. The liquid phase formed during sintering process could improve sinterability of TiC-based cermets i.e., it could lower sintering temperatures. The TiC-Ni composites typically exhibited a core-rim structure. The cores consisted of undissolved TiC particles enveloped by rims of (Ti, W)C solid solution phase. Hardness of TiC-Ni composites increased with WC content. Sintering temperature also had a slight effect on hardness values.


1989 ◽  
Vol 169 ◽  
Author(s):  
Jong‐Gyu Lee ◽  
K.V. Ramanujachary ◽  
M. Greenblattî

AbstractThe n‐type superconductor, Nd1.85Ce0.15CuO4‐δ has been prepared by solid state reaction and solution precursor techniques under various conditions and characterized by means of X‐ray diffraction, magnetic susceptibility, electrical resistivity and SEM measurements. Samples prepared by solution method displayed higher normal state resistance but better superconducting volume fractions than those prepared by conventional ceramic techniques. In addition, the solution precursor technique reduces the sintering temperature from 1150°C (used for solid‐state route) to 1000°C in achieving the superconducting phase. The solution‐route yields particles with relatively uniform size distribution, but poor connectivity between the grains. In contrast, the solid state preparations yield well connected grains but with a larger distribution of sizes. The observed differences in the superconducting properties of samples prepared by different techniques have been attributed to the differences in their microstructure.


2010 ◽  
Vol 44-47 ◽  
pp. 2299-2306
Author(s):  
H.M.Noor Ul Huda Khan Asghar ◽  
M. Asghar ◽  
M.S. Awan

Polycrystalline spintronic material (Cd0.55Hg0.45Te) was synthesized by conventional solid state reaction. The samples ( = 5 mm and T = 1.5 mm) were prepared by uni-axial pressing. Samples were melted at 800°C for 3-2 hours. For chemical analyses, surface morphology and structural analyses, scanning electron microscopy (SEM) equipped with EDX system and X-ray diffraction studies were performed. XRD confirmed the cubic crystal structure. The Lattice constant of (Cd0.55Hg0.45Te) as determined by XRD was 0.6464 nm. The Miller indices (hkl) have been found by using crystallography method. The observed planes were (200), (210) and (331). The EDX analyses showed the typically compositions: Te 24.8% Cd 14.8% Al 5% and O2 46.4 % & C 9% (3 hours treatment) and Te 28.1% Cd 16% Al 4.1% and O2 39.3 %, Si 0.360% & C 12.1% (2 hours treatment) however we could not find any representative peak for Hg in all of the EDX analyses.


2014 ◽  
Vol 933 ◽  
pp. 12-16 ◽  
Author(s):  
Chung Long Pan ◽  
Ping Cheng Chen ◽  
Tsu Chung Tan ◽  
Wei Cheng Lin ◽  
Chun Hsu Shen ◽  
...  

The effect of V2O5addition on the microstructures and the microwave dielectric properties of 0.9CaWO4-0.1Mg2SiO4(9CWMS) ceramics prepared by conventional solid-state routes have been investigated. The V2O5were selected as liquid phase sintering aids to lower the sintering temperature of 9CWMS ceramics. A small amount of V2O5(0.25~1 wt%) were used for sintering aid and led to high densification at 1050°C. The dielectric properties of 9CWMS ceramics with V2O5additions are strongly dependent on the densification, the microstructure. As the amount of V2O5additives increased from 0.25 to 1.0 wt%, the dielectric constantsεrdecreased following the trend with density. The quality valuesQdecreased with the increase of V2O5amount for all sintering temperatures. The 0.25 wt% V2O5-doped 0.9CaWO4-0.1Mg2SiO4ceramicssintered at 1080°C for 2 h had the optimum dielectric properties: εr= 5.7;Q×f= 73000 (at 14 GHz).


1988 ◽  
Vol 02 (09) ◽  
pp. 1095-1101
Author(s):  
JIE YAN ◽  
XIAOMING YANG ◽  
GUANGWEN PEI ◽  
ZHENYU MEN ◽  
DEYING SONG

The relation of the superconductivity of TlBaCaCu 2 O y to the sintering temperature, sintering time, annealing rate and sintering atmosphere was studied. It was shown that the zero-resistance temperature of the superconductors of the type was up to 118K and the stability was to some extent quite good. Through X-ray diffraction analysis, the TlBaCaCu 2 O y was found to possess two kinds of tetragonal structures. The T co =118 K sample has the unit cell parameters of a=5.446(2)Å, c=35.698(2)Å; while for T co =93.5 K , one has the parameters of a=5.469(2)Å, c=30.051(2)Å, the substitution of Tl, Ba, Ca , by many other elements show that only TlBaMgCu 2 O y and TlMg 2 Cu 2 O y are superconductors and others are insulators.


2020 ◽  
Vol 12 ◽  
Author(s):  
Zeyang Xue ◽  
Zi Wang ◽  
Chunhu Yu ◽  
Yajing Mao ◽  
Lizhai Pei

Background: Iron tailing causes great environmental and social problems which contaminate water, air and soil. Therefore, it is of important significance to prepare iron tailing ceramsites with microscale pores which can recycle the deposited iron tailing. Objective: The aim of the research is to obtain iron tailing ceramsites with microscale pores and good mechanical performance. Methods: The iron tailing ceramsites have been characterized via scanning electron microscopy (SEM) and X-ray diffraction (XRD). Influence of the content of iron tailing, temperature and duration time on the mechanical performance of the obtained ceramsites was performed and the optimal sintering parameter was determined. The bulk density, apparent density and cylinder compressive strength of the obtained ceramsites increase obviously as improving the iron tailing content, temperature and sintering time. Results: Duration time and sintering temperature play important roles in the formation and size of the pores of the ceramsites. The optimal iron tailing content and sintering parameter are 70wt.%, 1100 ℃ for 40 min. The iron tailing ceramsites mainly consist of orthorhombic CaAl2Si2O8, monoclinic CaSiO3, hexagonal Ca7Si2P2O16, triclinic MgSiO3, triclinic Al2SiO5 and triclinic Ca2Fe2O5 phases. Iron tailing ceramsites from 1100 ℃ for 40 min are composed of irregular particles with several hundreds of micrometers improving the density and strength of the ceramsites. Conclusion: Iron tailing ceramsites containing microscale pores were prepared using iron tailing and fly ash, and exhibit excellent potential for the application in the field of construction.


2021 ◽  
Vol 317 ◽  
pp. 35-45
Author(s):  
Aaliyawani Ezzerin Sinin ◽  
Walter Charles Primus ◽  
Zainal Abidin Talib ◽  
Chen Soo Kien ◽  
Abdul Halim Shaari ◽  
...  

Composite La0.88Bi0.12Mn0.80Ni0.20O3 was synthesized using the conventional solid-state reaction method with sintering temperature of 1200 °C for 12 hours and the dielectric properties investigated. The X-ray diffraction result shows that the composite has a rhombohedral structure with lattice parameter of a = b = c = 5.5136 Ǻ. Scanning electron microscope shows grains with approximately from 0.8 to 5.4 μm in size with presence of voids. The dielectric permittivity, εʹ and dielectric loss, εʺ were measured in the range of 298 K to 473 K where both are temperature and frequency dependent. At 1 kHz to 100 kHz, the εʹ is around 10000 and the dielectric loss tangent, tan δ is below 1.5. The electric behavior of this composite is best represented by Quasi-dc model which consists of two universal capacitors in parallel. Parameters value from the fitting indicated that high correlations of electrons between inter and intra-clusters. The activation energy, Ea calculated from the conductivity of the sample gives a value of 0.116 eV. Vibrating sample magnetometer shows that the La0.88Bi0.12Mn0.80Ni0.20O3 has a magnetic coercivity, Hc of 36.109 G and retentivity, Br, valued 2.7504 x 10-3 emu/g.


2016 ◽  
Vol 872 ◽  
pp. 87-91
Author(s):  
Supalak Manotham ◽  
Tawee Tunkasiri ◽  
Pharatree Jaita ◽  
Pichitchai Butnoi ◽  
Denis Russell Sweatman ◽  
...  

The properties of modified Bi0.5Na0.5TiO3 (BNT) based lead-free ceramics were investigated. The BNT-based ceramics were prepared by a solid-state mixed oxide method Phase formation was determined by X-ray diffraction technique (XRD). The X-ray diffraction analysis of the ceramics suggested that all samples exhibited a perovskite structure without second phase. The value of dielectric constant increased with increasing in sintering temperature. Moreover, high sintering temperatures could improve ferroelectric properties of BNT base lead-free ceramics.


Sign in / Sign up

Export Citation Format

Share Document