Finite element analysis of mechanical performance of nitinol biliary stent: effect of material properties

2013 ◽  
Vol 17 (sup2) ◽  
pp. s53-s59
Author(s):  
F. Nematzadeh ◽  
S. K. Sadrnezhaad
2013 ◽  
Vol 773-774 ◽  
pp. 9-17
Author(s):  
Fardin Nematzadeh ◽  
Sayed Khatiboleslam Sadrnezhaad ◽  
A.H. Kokabi ◽  
M. Razani ◽  
A.H. Mohagheghi

Stent placement has been a main approach to treat gastrointestinal diseases during past decade. Nitinol superelastic stents have been considered as a solution to such difficulties as restenosis after implantation, low twisting ability, inadequate radial mechanical strength and inappropriate dynamic behaviors associated with the ducts. In this paper, effects of Aftemperatures on mechanical performance of z-shaped Nitinol wire stent under crimping test for clinical applications are investigated by finite element simulation. Having 60% crimping and high radial resistive strength, favorable superelastic behaviors are attained at Aftemperature of 22°C. The performance of the stent is seen to be drastically different with a mere change of 1° in the segments angle.


Author(s):  
Joonas Ponkala ◽  
Mohsin Rizwan ◽  
Panos S. Shiakolas

The current state of the art in coronary stent technology, tubular structures used to keep the lumen open, is mainly populated by metallic stents coated with certain drugs to increase biocompatibility, even though experimental biodegradable stents have appeared in the horizon. Biodegradable polymeric stent design necessitates accurate characterization of time dependent polymer material properties and mechanical behavior for analysis and optimization. This manuscript presents the process for evaluating material properties for biodegradable biocompatible polymeric composite poly(diol citrate) hydroxyapatite (POC-HA), approaches for identifying material models and three dimensional solid models for finite element analysis and fabrication of a stent. The developed material models were utilized in a nonlinear finite element analysis to evaluate the suitability of the POC-HA material for coronary stent application. In addition, the advantages of using femtosecond laser machining to fabricate the POC-HA stent are discussed showing a machined stent. The methodology presented with additional steps can be applied in the development of a biocompatible and biodegradable polymeric stents.


2021 ◽  
Vol 2101 (1) ◽  
pp. 012059
Author(s):  
Z J Yang ◽  
X Li ◽  
G C Li ◽  
S C Peng

Abstract Hollow concrete-filled steel tubular (CFST) member is mainly adopted in power transmission and transformation structures, but when it is used in the superstructure with complex stress, the hollow CFST member has a low bearing capacity and is prone to brittle failure. To improve the mechanical performance of hollow CFST members, a new type of reinforced hollow high strength concrete-filled square steel tube (RHCFSST) was proposed, and its axial compression performance was researched. 18 finite element analysis (FEA) models of axially loaded RHCFSST stub columns were established through FEA software ABAQUS. The whole stress process of composite columns was studied, and parametric studies were carried out to analyze the mechanical performance of the member. Parameters of the steel strength, steel ratio, deformed bar and sandwich concrete strength were varied. Based on the simulation results, the stress process of members can be divided into four stages: elastic stage, elastoplastic stage, descending stage and gentle stage. With the increase of steel strength, steel ratio, the strength of sandwich concrete and the addition of deformed bars, the ultimate bearing capacity of members also increases. Additionally, the increment of those parameters will improve the ductility of the member, except for the sandwich concrete strength.


2021 ◽  
Vol 21 (5) ◽  
pp. 2987-2991
Author(s):  
Geumtaek Kim ◽  
Daeil Kwon

Along with the reduction in semiconductor chip size and enhanced performance of electronic devices, high input/output density is a desired factor in the electronics industry. To satisfy the high input/output density, fan-out wafer-level packaging has attracted significant attention. While fan-out wafer-level packaging has several advantages, such as lower thickness and better thermal resistance, warpage is one of the major challenges of the fan-out wafer-level packaging process to be minimized. There have been many studies investigating the effects of material properties and package design on warpage using finite element analysis. Current warpage simulations using finite element analysis have been routinely conducted with deterministic input parameters, although the parameter values are uncertain from the manufacturing point of view. This assumption may lead to a gap between the simulation and the field results. This paper presents an uncertainty analysis of wafer warpage in fan-out wafer-level packaging by using finite element analysis. Coefficient of thermal expansion of silicon is considered as a parameter with uncertainty. The warpage and the von Mises stress are calculated and compared with and without uncertainty.


1999 ◽  
Vol 36 (04) ◽  
pp. 203-210
Author(s):  
Steven P. McGee ◽  
Armin Troesch ◽  
Nickolas Vlahopoulos

In 1994 the International Maritime Organization adopted the Code of Safety for High-Speed Craft (HSC Code). After two years of use, several shortfalls were found, one being the damage length predictor, which is based on traditional steel, mono-hulled vessels. Other damage predictors were developed based on historical data, but they do not account for variables such as aluminum or fiberglass construction, transverse members, indenter geometry variation, or for the case where the vessel comes to rest on the grounding object. This paper proposes a damage prediction model based on material properties, structural layout, grounding object geometry, and vessel speed. The model incorporates four grounding mechanisms: plate cutting, plate tearing, crushing of plate behind transverse members, and transverse member failure. The method is used to determine the resistance energy, compared to the kinetic energy, of the vessel, to determine an effective damage length. Finite-element analysis was used to model the failure of both aluminum and steel transverse members with significant differences in the results. It was found that the transverse members provided the majority of the resistance energy in one grounding mechanism and negligible resistance energy in another.


Sign in / Sign up

Export Citation Format

Share Document