Flexural strength for insulated concrete sandwich wall panel reinforced with glass-fiber-reinforced polymer shear grids: roughness-induced mechanical bonding

2015 ◽  
Vol 19 (sup8) ◽  
pp. S8-397-S8-400 ◽  
Author(s):  
J. H. Kim ◽  
K.-S. Choi
Author(s):  
Danie Roy ◽  
Umesh Sharma ◽  
Pradeep Bhargava

A series of 21 reinforced concrete T- beams of length 1400 mm were cast using normal strength concrete. After 90 days of ageing, the beams were heated to 600°C and 900°C temperatures in an electric furnace. While three control beams were treated at room temperature, eighteen beams were heat damaged. The heat damaged beams were strengthened with FRP laminates and then tested until complete failure. Two different strengthening patterns of glass fiber reinforced polymer (GFRP) strengthening materials were used. The strengthened beams were then tested in a loading frame under 4 point loading condition. The load-deflection curves for the beams were examined to evaluate the capability of various strengthening patterns. Structural performance of various strengthening patterns were gauged in terms of failure mode, flexural strength, secant stiffness and the energy absorption capacity i.e. area under the load-displacement curve. It was observed that the beams exposed to different temperatures experienced a reduction in ultimate load carrying capacity ranging from 14 % to 61%. The secant stiffness and energy dissipation were reduced in the range of 34% to 56% and 10% to 41% respectively. The study shows that GFRP wraps were quite capable of restoring the flexural strength of heat damaged beams.


Machines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 16
Author(s):  
Gabriel Mansour ◽  
Panagiotis Kyratsis ◽  
Apostolos Korlos ◽  
Dimitrios Tzetzis

There are numerous engineering applications where Glass Fiber Reinforced Polymer (GFRP) composite tubes are utilized, such as desalination plants, power transmission systems, and paper mill, as well as marine, industries. Some type of machining is required for those various applications either for joining or fitting procedures. Machining of GFRP has certain difficulties that may damage the tube itself because of fiber delamination and pull out, as well as matrix deboning. Additionally, short machining tool life may be encountered while the formation of powder like chips maybe relatively hazardous. The present paper investigates the effect of process parameters for surface roughness of glass fiber-reinforced polymer composite pipes manufactured using the filament winding process. Experiments were conducted based on the high-speed turning Computer Numerical Control (CNC) machine using Poly-Crystalline Diamond (PCD) tool. The process parameters considered were cutting speed, feed, and depth of cut. Mathematical models for the surface roughness were developed based on the experimental results, and Analysis of Variance (ANOVA) has been performed with a confidence level of 95% for validation of the models.


Sign in / Sign up

Export Citation Format

Share Document