Characterisation of calcareous deposits on freely corroding low carbon steel in artificial sea water

2011 ◽  
Vol 46 (5) ◽  
pp. 611-617 ◽  
Author(s):  
F G Liu ◽  
S R Wu ◽  
C S Lu
2015 ◽  
Vol 799-800 ◽  
pp. 232-236 ◽  
Author(s):  
Abd Alrahim Al Shikshak ◽  
Abd Alhakem Mansour ◽  
A. Taher

The purpose of this research is to investigate the corrosion rate of low carbon steel in saline environment. The influence of variety of conditions that represent the actual conditions in practice such as the flow velocity and solution composition, particularly Na+, Cl-and SO4-2, content were performed. Weight loss test of low carbon steel in the lab was conducted to determine the corrosion rate data in stagnant and flowing seawater for comparison to investigate the effect of flow velocity of sea water on the corrosion behavior of the low carbon steel. Results show that the corrosion rate of low carbon steel is increased by increasing the flow of seawater, but at very high velocities the corrosion rate was recorded to be decreased. XRD results show that the corrosion products contain both Fe2O3and FeO(OH).


2011 ◽  
Vol 1 (2) ◽  
Author(s):  
S. Sujita

The aim of this study is to investigate the effect of shot peening on stress corrosion cracking of a low carbon steel in ocean water environment. The dimension of specimens were prepared in accordance with the ASTM G39. The hardness testing was carried out using microvickers with 0,25 kgf load in the longitudinal direction. The corrosion cracking test was immersed into artificial sea water for about 7 months. The test shows that the pitting corrosion is dominantly nucleated at the metal film interface. The biggest pitting corrosion was occurred under the static loading of 70 for the specimens unpeened. The presence of pitting corrosion promotes stress corrosion cracking. The cracking has a intergranular branched morphology which is typical for the chloride cracking of low carbon steel


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Lili Cao ◽  
Ming Li ◽  
Jiazhi Zhang ◽  
Gang Lin ◽  
Baichuan Gong ◽  
...  

In order to study the mechanical properties of low-carbon steel under the coupling effect of the overall environment and the loads, the tensile mechanical test was carried out. The results indicated that, as the sea water concentration and tensile deterioration increased, both the mass-loss rate and surface roughness of the low-carbon steel gradually increased, and the yield strength, tensile strength, elongation, and section shrinkage decreased gradually. The mechanical parameters of the low-carbon steel were affected by the joint actions of the sea water concentration and tensile deterioration. The established mechanical model of low-carbon steel under the marine engineering environment shows that tensile deterioration had no effects on the fracture toughness, while the increase of sea water concentration could reduce the fracture toughness remarkably.


2020 ◽  
Author(s):  
Kharia Salman Hassan ◽  
Ahmed Ibrahim Razooqi ◽  
Munaf Hashim Ridha

Abstract The influence of pack carburizing by different leftover organic materials was studied.Egg shell, dropping flower,orang shell mixed with charcoal, was used as refresher and its effect on corrosion fatigue of low carbon steel 1020 AISI (American Iron and Steel Institute) was studied. Carbon steel 1020 originally used for manufacturenumerousdevice parts such as gears, shaft, connecting rod.Severalsamples for the tensile and fatigueexaminationsareequipped from the based metalagreeing toASTM (American Society for Testing and Materials)descriptions. Pack carburizing is carried outby charcoal for liberation atomic carbon.The diffusion procedure on selectedsamples were pack carburizing using charcoal with addition leftover organic materialsas energies withratio of30% pack carburizing and at925 for two hours. After that, the samples quenched in water and tempered. Tensile,hardness, microstructures examination were implemented. Corrosion fatigue wascarried by rotating bending device in sea water 3.5% NaCl. The results showed that all carburizing compound causes an improving in corrosion fatigue due to the change in microstructure between the surface of specimens,its core and the comparative residual stress which produce by carburizing process.Egg shell give the high value and charcoal the lower value with respect to the basemetal.


1993 ◽  
Vol 90 (7-8) ◽  
pp. 917-922
Author(s):  
Y. Matsuda ◽  
M. Nishino ◽  
J. Ikeda

Sign in / Sign up

Export Citation Format

Share Document