Updated CO2/H2S internal corrosion model of natural gas pipelines based on flow field calculations

2014 ◽  
Vol 49 (1) ◽  
pp. 39-44 ◽  
Author(s):  
Y. Cui ◽  
H.-Q. Lan ◽  
Z.-L. Kang ◽  
R.-Y. He ◽  
H. Huang ◽  
...  
2020 ◽  
Vol MA2020-01 (28) ◽  
pp. 2140-2140
Author(s):  
Margaret Ziomek-Moroz ◽  
Timothy Duffy ◽  
Derek M. Hall ◽  
Serguei N. Lvov

Author(s):  
Fengmei Song ◽  
John McFarland ◽  
Barron Bichon ◽  
Luc Huyse ◽  
Fraser King ◽  
...  

A probabilistic model is developed in this work to predict the internal corrosion (IC) threat due to water condensation in dry natural gas pipelines. The model involves the understanding of tariff limits (TLs) for water and other corrosive species in natural gas; a consensus definition of an extremely unlikely condition for IC threat; a statistical analysis of field operating temperature, pressure, and water content (WC) data from a number of operators; and a known but modified relation of the saturated WC vs. operating temperature and pressure. By setting the limit of the probability of water condensation at 2% of the time that the pipe surface is wet, the maximum WC allowed in the natural gas can be determined for any given temperature and pressure. Practical operating charts have been developed for guiding pipeline operators to understand and minimize IC threats in dry gas (DG) pipelines. This paper presents the probabilistic modeling approach and discusses some model results.


Author(s):  
David Owen ◽  
Simon Schapira

Alliance Pipeline operates an integrated Canadian and U.S. high-pressure, rich natural gas transmission pipeline system. Rich natural gas pipelines are unique in that the product transported in these pipelines contains greater amounts of higher molecular weight hydrocarbons than would be transported in a dry natural gas pipeline. The specifications for gas quality however are very similar and require the product to contain less than sixty five mg/m3 water, no free liquids and/or objectionable materials such as bacteria, ashphaltene, gum, etc. The acid gases, carbon dioxide and hydrogen sulphide, are also required to be below certain values (see Table 1). Corrosion is not expected to occur under these conditions due to the lack of free water available for the development of an electrochemical corrosion cell. However, there are instances where the gas quality may vary and this gas enters facility piping for short periods of time. A method has been developed by Pipeline Research Council International (PRCI) to determine the internal corrosion susceptibility for dry gas natural gas pipelines but there are currently no industry accepted models which determine the internal corrosion susceptibility for high energy natural gas (HENG) pipeline systems. Accordingly, it is important for operators of pipelines with high energy natural gas (HENG) to collect and analyze these off specification events and develop a method to determine the relative impact on internal corrosion susceptibility. It is perhaps more important for operators to use this method to develop a strategy to prioritize facility piping for inspection and confirm the absence of internal corrosion. An Internal Corrosion Susceptibility Assessment (ICSA) method has been developed for HENG which considers off specification water, carbon dioxide, and hydrogen sulphide contents in the HENG. The analysis has been enhanced to also consider low temperature operation and hydrocarbon dew-point variations. The model has been effectively trialed over the last number of years to prioritize inspections and has been further tested against PRCI research and models developed for dry gas internal corrosion susceptibility. All internal corrosion models need to identify free water as prime contributor to susceptibility, thus the subject model is considered adaptable to other gas pipeline systems. This paper discusses the methods used to develop the model, the challenges encountered and results of the field inspections conducted.


Author(s):  
Kaushik Das ◽  
Debashis Basu ◽  
Xihua He ◽  
Stuart Stothoff ◽  
Kevin Supak ◽  
...  

T-sectioned configurations with a deadleg at the stopple are present in natural gas pipelines, where liquid water may accumulate, increasing the potential for internal corrosion. The objectives of the present study are to explore the pipeline operating conditions under which water enters the deadleg and define an operating protocol to prevent water accumulation in deadlegs. A combined computational fluid dynamics (CFD) experimental and analytical study was conducted to understand the behavior of liquid slugs at the T-junctions with dead ends. The flow equations were solved as an unsteady multiphase (gas and water) incompressible flow problem using the Volume of Fluid (VoF) Method. The analytical calculations were based on a modified form of the macroscopic mechanical energy balance equation. In order to computationally simulate the critical velocity at which water enters the deadleg, the inlet gas flow rate was specified to be a fixed value, while the water flow rate was gradually increased. The liquid entirely bypasses the deadleg until the liquid water velocity exceeds a critical value, which was noted as the critical superficial liquid velocity. The experimental study was conducted using a flow loop to understand the behavior of liquid water at the T-junction and determine the condition when liquid enters the deadleg. The analytical and computed solutions were compared with experimental observations. The computed results follow the same pattern as the experimental and analytical data. Solutions indicate that critical superficial liquid velocity is linearly dependent on superficial inlet gas velocity.


2021 ◽  
Vol MA2021-01 (56) ◽  
pp. 1461-1461
Author(s):  
Malgorzata Ziomek-Moroz ◽  
Timothy Duffy ◽  
Derek M Hall ◽  
Serguei Lvov

Author(s):  
Toby Fore ◽  
Stefan Klein ◽  
Chris Yoxall ◽  
Stan Cone

Managing the threat of Stress Corrosion Cracking (SCC) in natural gas pipelines continues to be an area of focus for many operating companies with potentially susceptible pipelines. This paper describes the validation process of the high-resolution Electro-Magnetic Acoustical Transducer (EMAT) In-Line Inspection (ILI) technology for detection of SCC prior to scheduled pressure tests of inspected line pipe valve sections. The validation of the EMAT technology covered the application of high-resolution EMAT ILI and determining the Probability Of Detection (POD) and Identification (POI). The ILI verification process is in accordance to a API 1163 Level 3 validation. It is described in detail for 30″ and 36″ pipeline segments. Both segments are known to have an SCC history. Correlation of EMAT ILI calls to manual non-destructive measurements and destructively tested SCC samples lead to a comprehensive understanding of the capabilities of the EMAT technology and the associated process for managing the SCC threat. Based on the data gathered, the dimensional tool tolerances in terms of length and depth are derived.


Sign in / Sign up

Export Citation Format

Share Document