Thermodynamic and kinetic analysis of interfacial reaction between CBN and titanium activated Ag–Cu alloy

2006 ◽  
Vol 22 (1) ◽  
pp. 105-109 ◽  
Author(s):  
W. F. Ding ◽  
J. H. Xu ◽  
M. Shen ◽  
Y. C. Fu ◽  
B. Xiao
2014 ◽  
Vol 1611 ◽  
pp. 105-110
Author(s):  
M. Morua ◽  
M. Ramirez-Argaez ◽  
C. Gonzalez-Rivera

ABSTRACTIn this work the thermal and kinetic analysis of the cooling and solidification of a near eutectic Al-Cu alloy is performed using inverse thermal and solidification kinetics analysis. The Fourier thermal analysis is applied to experimental cooling curves to obtain data on solid fraction evolution and latent heat of solidification. Inverse thermal analysis is applied to calculate the global heat transfer coefficients that allow correct simulation of the cooling of experimental probes. The free growth method is used to obtain the eutectic growth coefficients. All the obtained parameters are feed into a heat transfer-solidification kinetics model to validate the methodology and results generated from this work. It is found a relatively good agreement between experimental and predicted cooling curves which suggest that this methodology could be used to generate useful information needed to simulate eutectic solidification.


2011 ◽  
Vol 176 (1) ◽  
pp. 53-59 ◽  
Author(s):  
Chuanbao Wang ◽  
Shujie Li ◽  
Ting Zhang ◽  
Yang Pan

Author(s):  
Shrikant P. Bhat

deformation behavior of Al-Cu alloys aged to contain θ ' has been the subject of many investigations (e.g., Ref. 1-5). Since θ ' is strong and hard, dislocations bypass θ ' plates (Orowan mechanism) at low strains. However, at high strains the partially coherent θ ' plates are probably sheared, although the mechanism is complex, depending on the form of deformation. Particularly, the cyclic straining of the bulk alloy is known to produce gross bends and twists of θ '. However, no detailed investigation of the deformation of θ ' has yet been reported; moreover, Calabrese and Laird interpreted the deformation of θ ' as largely being elastic.During an investigation of high temperature cyclic deformation, the detailed electron-microscopic observation revealed that, under reversed straining conditions, θ ' particles are severely distorted--bent and twisted depending on the local matrix constraint. A typical electronmicrograph, showing the twist is shown in Fig. 1. In order to establish whether the deformation is elastic or plastic, a sample from a specimen cycled at room temperature was heated inside the microscope and the results are presented in a series of micrographs (Fig. 2a-e).


Author(s):  
Atul S. Ramani ◽  
Earle R. Ryba ◽  
Paul R. Howell

The “decagonal” phase in the Al-Co-Cu system of nominal composition Al65CO15Cu20 first discovered by He et al. is especially suitable as a topic of investigation since it has been claimed that it is thermodynamically stable and is reported to be periodic in the dimension perpendicular to the plane of quasiperiodic 10-fold symmetry. It can thus be expected that it is an important link between fully periodic and fully quasiperiodic phases. In the present paper, we report important findings of our transmission electron microscope (TEM) study that concern deviations from ideal decagonal symmetry of selected area diffraction patterns (SADPs) obtained from several “decagonal” phase crystals and also observation of a lattice of main reflections on the 10-fold and 2-fold SADPs that implies complete 3-dimensional lattice periodicity and the fundamentally incommensurate nature of the “decagonal” phase. We also present diffraction evidence for a new transition phase that can be classified as being one-dimensionally quasiperiodic if the lattice of main reflections is ignored.


Author(s):  
J. R. Reed ◽  
D. J. Michel ◽  
P. R. Howell

The Al6Li3Cu (T2) phase, which exhibits five-fold or icosahedral symmetry, forms through solid state precipitation in dilute Al-Li-Cu alloys. Recent studies have reported that the T2 phase transforms either during TEM examination of thin foils or following ion-milling of thin foil specimens. Related studies have shown that T2 phase transforms to a microcrystalline array of the TB phase and a dilute aluminum solid solution during in-situ heating in the TEM. The purpose of this paper is to report results from an investigation of the influence of ion-milling on the stability of the T2 phase in dilute Al-Li-Cu alloy.The 3-mm diameter TEM disc specimens were prepared from a specially melted Al-2.5%Li-2.5%Cu alloy produced by conventional procedures. The TEM specimens were solution heat treated 1 h at 550°C and aged 1000 h at 190°C in air to develop the microstructure. The disc specimens were electropolished to achieve electron transparency using a 20:80 (vol. percent) nitric acid: methanol solution at -60°C.


1987 ◽  
Vol 48 (C6) ◽  
pp. C6-349-C6-354
Author(s):  
K. Hono ◽  
T. Sakurai ◽  
H. W. Pickering

Sign in / Sign up

Export Citation Format

Share Document