Plastic deformation of θ ' in Al-4%Cu alloy

Author(s):  
Shrikant P. Bhat

deformation behavior of Al-Cu alloys aged to contain θ ' has been the subject of many investigations (e.g., Ref. 1-5). Since θ ' is strong and hard, dislocations bypass θ ' plates (Orowan mechanism) at low strains. However, at high strains the partially coherent θ ' plates are probably sheared, although the mechanism is complex, depending on the form of deformation. Particularly, the cyclic straining of the bulk alloy is known to produce gross bends and twists of θ '. However, no detailed investigation of the deformation of θ ' has yet been reported; moreover, Calabrese and Laird interpreted the deformation of θ ' as largely being elastic.During an investigation of high temperature cyclic deformation, the detailed electron-microscopic observation revealed that, under reversed straining conditions, θ ' particles are severely distorted--bent and twisted depending on the local matrix constraint. A typical electronmicrograph, showing the twist is shown in Fig. 1. In order to establish whether the deformation is elastic or plastic, a sample from a specimen cycled at room temperature was heated inside the microscope and the results are presented in a series of micrographs (Fig. 2a-e).

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3283 ◽  
Author(s):  
Masanobu Matsuguchi ◽  
Shinnosuke Fujii

Poly(N-isopropylacrylamide) (PNIPAM) nanoparticles formed in water-methanol binary solvent were successfully deposited on a resonator surface at room temperature by exploiting the cononsolvency effect on the phase transition of PNIPAM aqueous solutions. Scanning electron microscopic observation revealed that the nanoparticles were secondary and made up of agglomerated primary spherical particles of about 10-nm diameter, buried in the film. The magnitude of the sensor response toward HCl gas was larger than that of the nanoparticle sensor prepared from pure water solvent, and the sensitivity to 1 ppm of HCl of sensor-coated nanoparticles based on the present method was 3.3 Hz/ppm. The recovery of the sensors was less than 90% at first cycle measurement, but had improved to almost 100% at the third cycle.


Author(s):  
Surya V. Pothula ◽  
Yong X. Gan

In this work, preparation of discontinuous nickel films on zirconium by electrochemical deposition of Ni-Cu alloy followed by selective anodic etching of the more noble metal, copper, was performed in an aqueous solution at room temperature. Potential varying electrodeposition produces were applied to obtain Ni-Cu alloys on Zr substrate. It is found that the Ni content increases as the deposition potential becomes more negative. Cyclic voltam-metric data indicate that the anodic dissolution of nickel is retarded by passivation. By taking the advantage of nickel passivation, selective anodic etching of Cu is achieved. Multicyclic electrochemical alloying/dealloying process makes the film rich of nickel and complete dealloying of copper.


2007 ◽  
Vol 26-28 ◽  
pp. 1283-1286 ◽  
Author(s):  
Eigo Kakutani ◽  
Masahiro Jotoku ◽  
Atsushi Yamamoto ◽  
Harushige Tsubakino

A low impurity magnesium alloy has bean prepared. Deformation behavior in cold-rolling and corrosion behavior of the alloy were compared with those of a commercial alloy. The specimens were cold-rolled at room temperature with reduction rates of 0~80 %. Transmission electron microscopic observations on the cold-rolled specimens were carried out. In the case of the low impurity magnesium alloy, recrystallization easily occurred. Analyses of microstructures in the deformed specimens were carried out by means of EBSP, and the recrystallization phenomena have been discussed. Another effect of lowering the impurities is to improve a corrosion resistance with changing the corrosion morphology.


2013 ◽  
Vol 197 ◽  
pp. 209-214 ◽  
Author(s):  
Agnieszka Tomaszewska ◽  
Rafał Michalik ◽  
Henryk Woźnica

Properties of the Zn-Al-Cu alloys can be improved by partial or total replacement of the copper with silicon. The previous studies of the current authors have shown that in alloys with silicon addition its precipitates are not evenly distributed, which can lead to uneven wear of parts made of the Zn-Al-Cu alloy. The study of phenomena occurring during the crystallization of the ZnAl22Cu3Si alloy with ATD methods have shown that silicon does not form compounds and solid solutions with Zn and Al. In the examined alloy silicon is released as the primary even before the actual solidification of dendrites. It is not possible to reduce the irregular distribution of precipitates through heat treatment. Therefore it is important to assure the uniform distribution of precipitates of silicon already on the crystallization stage, e.g. by addition of rare earth elements. The purpose of this study was to determine the effect of rare earth elements on the morphology of silicon precipitates in the ZnAl22Cu3Si alloy. The investigated material were alloys containing 22 wt% Al, 3 wt % Cu and 1.5 wt% Si (Zn-remaining). The samples have been taken from the top, middle and bottom of the ingot. In order to determine the morphological characteristics of silicon precipitates a computer program: Met-Ilo developed in the Department of Materials Science, Silesian University of Technology was used. Changes of the area fraction and shape of precipitates in particular areas of the ingot were the subject of analysis in this work.


Author(s):  
Li Li-Sheng ◽  
L.F. Allard ◽  
W.C. Bigelow

The aromatic polyamides form a class of fibers having mechanical properties which are much better than those of aliphatic polyamides. Currently, the accepted morphology of these fibers as proposed by M.G. Dobb, et al. is a radial arrangement of pleated sheets, with the plane of the pleats parallel to the axis of the fiber. We have recently obtained evidence which supports a different morphology of this type of fiber, using ultramicrotomy and ion-thinning techniques to prepare specimens for transmission and scanning electron microscopy.


Author(s):  
Neng-Bo He ◽  
S.W. Hui

Monolayers and planar "black" lipid membranes have been widely used as models for studying the structure and properties of biological membranes. Because of the lack of a suitable method to prepare these membranes for electron microscopic observation, their ultrastructure is so far not well understood. A method of forming molecular bilayers over the holes of fine mesh grids was developed by Hui et al. to study hydrated and unsupported lipid bilayers by electron diffraction, and to image phase separated domains by diffraction contrast. We now adapted the method of Pattus et al. of spreading biological membranes vesicles on the air-water interfaces to reconstitute biological membranes into unsupported planar films for electron microscopic study. hemoglobin-free human erythrocyte membrane stroma was prepared by hemolysis. The membranes were spreaded at 20°C on balanced salt solution in a Langmuir trough until a surface pressure of 20 dyne/cm was reached. The surface film was repeatedly washed by passing to adjacent troughs over shallow partitions (fig. 1).


Author(s):  
George E. Childs ◽  
Joseph H. Miller

Biochemical and differential centrifugation studies have demonstrated that the oxidative enzymes of Acanthamoeba sp. are localized in mitochondria and peroxisomes (microbodies). Although hartmanellid amoebae have been the subject of several electron microscopic studies, peroxisomes have not been described from these organisms or other protozoa. Cytochemical tests employing diaminobenzidine-tetra HCl (DAB) and hydrogen peroxide were used for the ultrastructural localization of peroxidases of trophozoites of Hartmanella sp. (A-l, Culbertson), a pathogenic strain grown in axenic cultures of trypticase soy broth.


Author(s):  
D.J. Lim ◽  
W.C. Lane

The morphology and function of the vestibular sensory organs has been extensively studied during the last decade with the advent of electron microscopy and electrophysiology. The opening of the space age also accelerated active investigation in this area, since this organ is responsible for the sensation of balance and of linear, angular and gravitational acceleration.The vestibular sense organs are formed by the saccule, utricle and three ampullae of the semicircular canals. The maculae (sacculi and utriculi) have otolithic membranes on the top of the sensory epithelia. The otolithic membrane is formed by a layer of thick gelatin and sand-piles of calcium carbonate crystals (Fig.l).


Sign in / Sign up

Export Citation Format

Share Document