High strength low carbon hot rolledδ-ferritic steel: microstructure and mechanical properties

2011 ◽  
Vol 27 (11) ◽  
pp. 1718-1723
Author(s):  
N Bhowmik ◽  
S K Ghosh1 ◽  
A Haldar ◽  
P P Chattopadhyay
Author(s):  
A.G. Fox ◽  
V.R. Mattes ◽  
S. Mikalac ◽  
M.G. Vassilaros

Because of their excellent weldability, high strength low alloy (HSLA) ultra low carbon bainitic (ULCB) steels are finding increasing applications in ship and submarine construction. In order to achieve the required strength and toughness in ULCB HSLA steels it is necessary to control chemical composition and thermo-mechanical processing very carefully so that the desired microstructure and mechanical properties can be achieved. For instance HSLA 100 ULCB steel (nominal yield strength 100 ksi) used by the U.S. Navy in shipbuilding applications can derive its strength and toughness from the following sources:- (1) solid solution strengthening (2) small prior austenite grain size derived from niobium carbonitride precipitation at austenite grain boundaries (3) dislocation substructure and (4) from copper precipitates (in aged alloys). The object of the present work is to correlate the microstructure and mechanical properties of production batches of HSLA 100 in the quenched and aged conditions. Because many of the salient features of these microstructures are submicron in size it was found necessary to use SEM and TEM.


Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 216
Author(s):  
Laibo Sun ◽  
Fengchun Jiang ◽  
Ruisheng Huang ◽  
Ding Yuan ◽  
Chunhuan Guo ◽  
...  

Wire and arc additive manufacturing (WAAM) is a novel technique for fabricating large and complex components applied in the manufacturing industry. In this study, a low-carbon high-strength steel component deposited by WAAM for use in ship building was obtained. Its microstructure and mechanical properties as well as fracture mechanisms were investigated. The results showed that the microstructure consisted of an equiaxed zone, columnar zone, and inter-layer zone, while the phases formed in different parts of the deposited component were different due to various thermal cycles and cooling rates. The microhardness of the bottom and top varied from 290 HV to 260 HV, caused by temperature gradients and an inhomogeneous microstructure. Additionally, the tensile properties in transversal and longitudinal orientations show anisotropy characteristics, which was further investigated using a digital image correlation (DIC) method. This experimental fact indicated that the longitudinal tensile property has an inferior performance and tends to cause stress concentrations in the inter-layer areas due to the inclusion of more inter-layer zones. Furthermore, electron backscattered diffraction (EBSD) was applied to analyze the difference in Taylor factor between the inter-layer area and deposited area. The standard deviation of the Taylor factor in the inter-layer area was determined to be 0.907, which was larger than that in the deposited area (0.865), indicating nonuniform deformation and local stress concentration occurred in inter-layer area. Finally, as observed from the fracture morphology on the fractured surface of the sample, anisotropy was also approved by the comparison of the transversal and longitudinal tensile specimens.


2006 ◽  
Vol 15-17 ◽  
pp. 786-791 ◽  
Author(s):  
J.S. Kang ◽  
Y. Huang ◽  
C.W. Lee ◽  
Chan Gyung Park

Effects of deformation at austenite region and cooling rate on the microstructure and mechanical properties of low carbon (0.06 wt. % C) high strength low alloy steels have been investigated. Average grain size decreased and polygonal ferrite transformation promoted with increasing deformation amount at austenite region due to increase of ferrite nucleation site. Microstructure was also influenced by cooling rate resulting in the development of a mixture of fine polygonal ferrite and acicular ferrite at 10°C/s cooling rate. Discontinuous yielding occurred in highly deformed specimen due to the formation of polygonal ferrite. However, small grain size of highly deformed specimen caused lower ductile-to-brittle transition temperature than slightly deformed specimen.


Sign in / Sign up

Export Citation Format

Share Document