New GMT material suitable for various polymers and high glass fibre content

2015 ◽  
Vol 44 (3) ◽  
pp. 117-122 ◽  
Author(s):  
G. Jung ◽  
P. Mitschang ◽  
C. Park
Keyword(s):  
Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3786 ◽  
Author(s):  
Abubaker A. M. Ahmed ◽  
Yanmin Jia

A comprehensive program of experiments consisting of compression, uniaxial compression, direct shear, flexural as well as splitting tensile and air permeability tests were performed to analyse the effect of the level of fibre dosage and the water–cement ratio on the physical properties of hybrid fibre-reinforced concrete (HFRC). Two types of fibres were studied in terms of their effect on the properties of HFRC. The results indicated that the mechanical properties of concrete were significantly improved by increasing the fibre content. However, increasing the percentage fibre content past a certain peak performance limit (0.9% glass fibre (GF) and 0.45% polypropylene fibre (PPF)) led to a decrease in strength compared to reference mixes. Additionally, the incorporation of hybrid fibres yielded an increase in air permeability in the tested specimens. The results showed that the strength-related properties of HFRC were superior to the properties of single fibre-reinforced concrete.


Author(s):  
A. Gisario ◽  
F. Quadrini ◽  
V. Tagliaferri

Fibre heating can be employed to optimise composite fabrication in hand lamination. In order to show the fibre heating effect on the properties of hand laminated composites, dynamical and mechanical tests were performed on simply cured glass fibre reinforced laminates and on treated ones. In this second case the fibre content was heated before composite lamination by means of a hot parallel plate press. All the specimens were room temperature cured. A significant increase in storage modulus was observed as an effect of fibre heating as well as a data dispersion reduction. Additionally a lower thickness was measured due to the higher resin fluidity.


Sign in / Sign up

Export Citation Format

Share Document