Simulation and measurement of aluminium–nitride precipitation in hot rolled Al killed low carbon steel coil

2013 ◽  
Vol 7 (4) ◽  
pp. 172-175
Author(s):  
I. Felde ◽  
A. Mucsi
1993 ◽  
Vol 90 (7-8) ◽  
pp. 917-922
Author(s):  
Y. Matsuda ◽  
M. Nishino ◽  
J. Ikeda

Alloy Digest ◽  
1972 ◽  
Vol 21 (8) ◽  

Abstract AISI 1015 is a low-carbon steel used in the annealed, cold-worked, hot-rolled or normalized condition for general purpose construction and engineering. It is also used for case-hardened components. It combines good machinability, good workability and good weldability. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on forming, heat treating, machining, joining, and surface treatment. Filing Code: CS-48. Producer or source: Carbon steel mills.


2011 ◽  
Vol 462-463 ◽  
pp. 407-412 ◽  
Author(s):  
Komsan Ngamkham ◽  
Satian Niltawach ◽  
Somrerk Chandra-ambhorn

The objective of this work was to carry out tensile tests to investigate the effect of finishing temperature on mechanical adhesion of thermal oxide scale on hot-rolled low carbon steel strips. Two hot-rolled low carbon steel strips were produced in an industrial hot rolling line by fixing a coiling temperature at 620 °C and varying finishing temperatures at 820 and 910 °C. Two testing methods were conducted. First, each of a number of samples was subjected to a given imposed strain with ex-situ imaging of scale surface after straining. Second, only one sample was strained in a test with ex-situ imaging of scale surface at every 2 mm elongation of the sample. A spallation ratio, an area where scale was spalled out and normalised by the total area observed by microscope, was plotted as a function of the imposed strain. These two methods gave the same tendency of results as follows. At a given strain, the spallation ratio of scale on steel produced using higher finishing temperature was larger. The gradient of spallation ratio with respect to the imposed strain of that scale was also steeper. This reflects the higher susceptibility of scale to spall out with increasing imposed strain. This behaviour might be related to the larger thickness of scale on steel produced using higher finishing temperature. For the second testing method, lowering the magnification of microscope to observe scale spallation from 50x to 20x increased R2 of the curve of spallation ratio versus the imposed strain, as well as improved the reproducibility of the test.


1988 ◽  
Vol 52 (12) ◽  
pp. 1212-1220 ◽  
Author(s):  
Takehide Senuma ◽  
Hiroshi Yada ◽  
Ryou Shimizu ◽  
Masao Matsuo ◽  
Jirou Harase

2006 ◽  
Vol 46 (5) ◽  
pp. 754-758 ◽  
Author(s):  
Hai-Long Yi ◽  
Lin-Xiu Du ◽  
Guo-Dong Wang ◽  
Xiang-Hua Liu

Sign in / Sign up

Export Citation Format

Share Document