UV-microspectrophotometry: A method to prove wood modification with MMF?

2014 ◽  
Vol 6 (1) ◽  
pp. 27-30
Author(s):  
K.-C. Mahnert ◽  
S. Adamopoulos ◽  
G. Koch ◽  
H. Militz
Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 327
Author(s):  
Morwenna J. Spear ◽  
Simon F. Curling ◽  
Athanasios Dimitriou ◽  
Graham A. Ormondroyd

Wood modification is now widely recognized as offering enhanced properties of wood and overcoming issues such as dimensional instability and biodegradability which affect natural wood. Typical wood modification systems use chemical modification, impregnation modification or thermal modification, and these vary in the properties achieved. As control and understanding of the wood modification systems has progressed, further opportunities have arisen to add extra functionalities to the modified wood. These include UV stabilisation, fire retardancy, or enhanced suitability for paints and coatings. Thus, wood may become a multi-functional material through a series of modifications, treatments or reactions, to create a high-performance material with previously impossible properties. In this paper we review systems that combine the well-established wood modification procedures with secondary techniques or modifications to deliver emerging technologies with multi-functionality. The new applications targeted using this additional functionality are diverse and range from increased electrical conductivity, creation of sensors or responsive materials, improvement of wellbeing in the built environment, and enhanced fire and flame protection. We identified two parallel and connected themes: (1) the functionalisation of modified timber and (2) the modification of timber to provide (multi)-functionality. A wide range of nanotechnology concepts have been harnessed by this new generation of wood modifications and wood treatments. As this field is rapidly expanding, we also include within the review trends from current research in order to gauge the state of the art, and likely direction of travel of the industry.


IAWA Journal ◽  
2008 ◽  
Vol 29 (1) ◽  
pp. 55-68 ◽  
Author(s):  
Katarina Čufar ◽  
Jožica Gričar ◽  
Martin Zupančič ◽  
Gerald Koch ◽  
Uwe Schmitt

Evaluating the state of deterioration of water-logged archaeological wood is necessary in order to select treatments for its conservation and storage, particularly in the case of valuable archaeological artefacts. For this purpose archaeological wood of ash (Fraxinus sp.) and oak (Quercus sp.) buried in water-logged conditions at prehistoric settlements on the Ljubljansko barje (Ljubljana moor), Slovenia, aged approx. 5,200 and 4,500 years, was investigated by means of light microscopy (LM), transmission electron microscopy (TEM) and cellular UV-microspectrophotometry (UMSP). LM and TEM revealed that the ash wood aged 5,200 years was the least preserved. The secondary walls of fibres, vessels and parenchyma cells were considerably thinner than in normal wood, indicating distinct degradation. TEM and UMSP additionally revealed strong delignification of the remaining parts of the secondary walls of all cell types. The compound middle lamellae appeared structurally intact, but had lower UV-absorbance than normal wood of the same species. The cell corners were topochemically unchanged, as shown by high analogue UV-absorbance. The UV-absorbance maxima at a wavelength of 278 nm corresponded to those of hardwood lignins. The oak heartwood was generally better preserved than the ash wood. Within each species, the 4,500- year-old samples generally appeared better preserved than those 5,200 years old.


Holzforschung ◽  
2016 ◽  
Vol 70 (3) ◽  
pp. 215-221 ◽  
Author(s):  
Bruno Andersons ◽  
Guna Noldt ◽  
Gerald Koch ◽  
Ingeborga Andersone ◽  
Anete Meija-Feldmane ◽  
...  

Abstract Thermal modification (TM) of wood has occupied a relatively narrow but stable niche as an alternative for chemical wood protection. There are different technological solutions for TM and not all details of their effects on wood tissue have been understood. The one-stage hydrothermal modification (HTM) at elevated vapour pressure essentially changes the wood’s composition and structure. In the present paper, the changes in three hardwood lignins (alder, aspen, and birch) were observed within the cell wall by means of cellular UV microspectrophotometry. The lignin absorbances in the compound middle lamella (CML) of unmodified wood are 1.7- to 2.0-fold higher than those in the fibre S2 layer. The woods were modified in the temperature range from 140 to 180°C, while in the lower temperature range (140°C/1 h), the UV absorbances are little affected. Essential changes occur in the range of 160–180°C and the UV data reflect these by absorbtion changes, while the absorbances at 278 nm rise with factors around 2 more in the S2 layer than in the CML. The absorbance increments are interpreted as polycondensation reactions with furfural and other degradation products of hemicelluloses with the lignin moiety of the cell wall.


Holzforschung ◽  
2020 ◽  
Vol 74 (4) ◽  
pp. 362-371 ◽  
Author(s):  
Lukas Emmerich ◽  
Holger Militz

AbstractThe efficacy of chemical wood modification is closely related to the permeability of the wood species and the cell wall deposition of the reagent, causing a permanent swelling (“bulking effect”). This study aimed to analyze how rubberwood (Hevea brasiliensis Müll. Arg.) and English oak (Quercus robur L.) may be affected by chemical wood modification, although they are known to show either variations in permeability or being less permeable. Thin clear veneers were treated with 1,3-dimethylol-4,5- dihydroxyethyleneurea (DMDHEU) which resulted in significantly reduced moisture-induced swelling and increased the resistance to static and dynamic indentation loads. The results evidenced significantly lower liquid uptakes in English oak compared to rubberwood, which directly affected the weight percent gains (WPGs) and restricted the range for potential improvements of the material properties. Surprisingly, rubberwood showed a lower cell wall bulking, which, in comparison with English oak, indicated less DMDHEU monomers entering the cell walls and rather being located in the cell lumens. Atypical for treatments with cell wall penetration chemicals, no further decrease in maximum swelling (SM) was detected with increasing bulking in rubberwood specimens. English oak showed higher variations in DMDHEU distribution within treated veneers and between earlywood and latewood areas, effecting a less homogeneous performance.


2020 ◽  
Vol 22 (9) ◽  
pp. 2786-2798 ◽  
Author(s):  
Anna Sangregorio ◽  
Anitha Muralidhara ◽  
Nathanael Guigo ◽  
Lisbeth G. Thygesen ◽  
Guy Marlair ◽  
...  

Focus on humins, a co-product from sugar conversion, to highlight their capacity to impregnate wood cell walls for making durable wood products.


Author(s):  
A S Gribanov ◽  
S I Roshchina ◽  
A Ya Naichuk ◽  
V I Melekhov
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document