Factors Affecting the Reliability of Augered Cast-In-Place Piles in Granular Soils at the Serviceability Limit State (DFI 2013 Young Professor Paper Competition Winner)

2013 ◽  
Vol 7 (2) ◽  
pp. 46-57 ◽  
Author(s):  
Armin W. Stuedlein ◽  
Seth C. Reddy
2017 ◽  
Vol 54 (12) ◽  
pp. 1704-1715 ◽  
Author(s):  
Seth C. Reddy ◽  
Armin W. Stuedlein

This study proposes a reliability-based design procedure to evaluate the allowable load for augered cast-in-place (ACIP) piles installed in predominately granular soils based on a prescribed level of reliability at the serviceability limit state. The ultimate limit state (ULS) ACIP pile–specific design model proposed in the companion paper is incorporated into a bivariate hyperbolic load–displacement model capable of describing the variability in the load–displacement relationship for a wide range of pile displacements. Following the approach outlined in the companion paper, distributions with truncated lower-bound capacities are incorporated into the reliability analyses. A lumped load-and-resistance factor is calibrated using a suitable performance function and Monte Carlo simulations. The average and conservative 95% lower-bound prediction intervals for the calibrated load-and-resistance factor resulting from the simulations are provided. Although unaccounted for in past studies, the slenderness ratio is shown to have significant influence on foundation reliability. Because of the low uncertainty in the proposed ULS pile capacity prediction model, the use of a truncated distribution has moderate influence on foundation reliability.


2020 ◽  
Vol 10 (5) ◽  
pp. 2089-2104 ◽  
Author(s):  
L. P. Gouveia ◽  
E. T. Lima Junior ◽  
J. P. L. Santos ◽  
W. W. M. Lira ◽  
J. L. R. Anjos ◽  
...  

2017 ◽  
Vol 22 (1) ◽  
pp. 54-61 ◽  
Author(s):  
Xiao-ya Bian ◽  
Jun-jie Zheng ◽  
Rong-Jun Zhang ◽  
Zhi-jun Xu

Author(s):  
Jeom Kee Paik ◽  
Anil Kumar Thayamballi

Author(s):  
Amin Moslemi Petrudi ◽  
Masoud Rahmani

In this research, the discrete element method has been used to analyze wave propagation and to investigate the factors affecting wave reduction in granular soils. The method of discrete elements is important because of the possibility of preparing completely similar specimens and examining the effect of changes in a certain parameter on the Behavior of the specimens. This method also provides an understanding of the changes that have occurred at the micro-scale of granular materials that are not achievable with other laboratory and numerical methods. To model the specimens, a set of disks with specific granulation has been used for two-dimensional studies. PFC 2D software has been used to perform simulations and related analyzes such as interparticle force. The DEM code in MATLAB is used to check the wave depreciation. In this research, the optimization process was performed using experimental data and the Taguchi method using the DEM method. The results of this study show that there is a direct relationship between the number of particle set contacts and the wave propagation speed. Also, material properties such as particle density are the most important parameters affecting wave velocity. The results of the method (DEM) are done with PFC 2D software and a comparison between the results of this method with the solution methods used by other researchers is shown to be a good match.


Sign in / Sign up

Export Citation Format

Share Document