Ball-mill rotation speed and rate of particle breakage: results for a full-scale unit

2000 ◽  
Vol 109 (3) ◽  
pp. 161-164 ◽  
Author(s):  
Claude Bazin ◽  
Gaétan Lavoie
2000 ◽  
Vol 41 (7) ◽  
pp. 165-171 ◽  
Author(s):  
W. A. Hijnen ◽  
J. Willemsen-Zwaagstra ◽  
P. Hiemstra ◽  
G. J. Medema ◽  
D. van der Kooij

At eight full-scale water treatment plants in the Netherlands the removal of spores of sulphite-reducing clostridia (SSRC) was determined. By sampling and processing large volumes of water (1 up to 500 litres) SSRC were detected after each stage of the treatment. This enabled the assessment of the removal efficiency of the full-scale unit processes for persistent micro-organisms. A comparison with literature data on the removal of Cryptosporidium and Giardia by the same type of processes revealed that SSRC can be considered as a potential surrogate. The average Decimal Elimination Capacity (DEC) of the overall treatment plants ranged from 1.3–4.3 log. The observed actual log removal of SSRC by the unit processes and the overall treatment at one of the studied locations showed that the level of variation in removal efficiency was approximately 2 log. Moreover, from the actual log removal values it was observed that a low SSRC removal by one unit process is partly compensated by a higher removal by subsequent unit processes at this location. SSRC can be used for identification of the process conditions that cause variation in micro-organism removal which may lead to process optimization. Further research is necessary to determine the optimal use of SSRC in water quality monitoring for the production of microbiologically safe drinking water.


2007 ◽  
Vol 534-536 ◽  
pp. 1489-1492 ◽  
Author(s):  
Dae Hwan Kwon ◽  
Jong Won Kum ◽  
Thuy Dang Nguyen ◽  
Dina V. Dudina ◽  
Pyuck Pa Choi ◽  
...  

Dispersion-strengthened copper with TiB2 was produced by ball-milling and spark plasma sintering (SPS).Ball-milling was performed at a rotation speed of 300rpm for 30 and 60min in Ar atmosphere by using a planetary ball mill (AGO-2). Spark-plasma sintering was carried out at 650°C for 5min under vacuum after mechanical alloying. The hardness of the specimens sintered using powder ball milled for 60min at 300rpm increased from 16.0 to 61.8 HRB than that of specimen using powder mixed with a turbular mixer, while the electrical conductivity varied from 93.40% to 83.34%IACS. In the case of milled powder, hardness increased as milling time increased, while the electrical conductivity decreased. On the other hand, hardness decreased with increasing sintering temperature, but the electrical conductiviey increased slightly


2009 ◽  
Vol 64 (17) ◽  
pp. 3766-3777 ◽  
Author(s):  
Matthew J. Metzger ◽  
David Glasser ◽  
Brendon Hausberger ◽  
Diane Hildebrandt ◽  
Benjamin J. Glasser

Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2776
Author(s):  
Chengyi Li ◽  
Zhao Han ◽  
Yuquan Zhang ◽  
Yuan Zheng ◽  
Hepeng Zhang ◽  
...  

The distribution of velocity, sludge, and dissolved oxygen in a full-scale anaerobic-anoxic-oxic (A2/O) oxidation ditch was numerically simulated under three rotation speed scenarios. The viscosity and settling rate of activated sludge were defined through a user-defined function (UDF), and the sludge phase was calculated using the mixture multiphase flow model. Dissolved oxygen (DO) was set as a user-defined source (UDS) and its generation and consumption rates were defined with UDFs. The relationship between velocity and sludge concentration was found to be contradictory, with dead zones leading to large sludge concentrations at the bottom of the oxidation ditch (OD), but not at the middle-curved wall of the anoxic pool. The flow rate of the reflux slot and aerator oxygenation rate were checked and correlated with DO concentrations in the anaerobic pool. The majority of the large sludge concentrations were concentrated in the biological selection pool and these remained constant with bed height. With reduced propeller and agitator rotation speed, the sludge concentrations reduced in the biological selection pool, but increased in the anaerobic and anoxic pools.


2015 ◽  
Vol 73 ◽  
pp. 116-123 ◽  
Author(s):  
Ngonidzashe Chimwani ◽  
François K. Mulenga ◽  
Diane Hildebrandt ◽  
David Glasser ◽  
Murray M. Bwalya

Author(s):  
Sébastien Gueydon ◽  
Guillaume Venet ◽  
Gerson Fernandes

It is useful to complement model tests of a floating wind turbine with simulations mimicking the scaled-down turbine. Standard engineering tools have some short-comings to model a rotor at the very low Reynolds that Froude scaled wind and rotor’s rotation speed impose. The flow around an airfoil at the scale of a wave basin brings new distinct challenges than at full scale. The capacity of standard engineering tools for the design of wind turbines to capture this complexity may be questioned. Therefore, work-around solutions need to be proposed. This paper looks at a common solution that consists of optimizing the load coefficients of the rotor to reproduce the measured rotor loads. 3 variants of optimizations are applied to a semisubmersible floating wind turbine at scale 1/50th, the DeepCwind semisubmersible platform. The effects of the differences between these 3 methods on the motions of the floater in waves and wind are analyzed. In the absence of a controller for the rotor, no significant differences related to the induced aerodynamic damping was noticed, but an offset in the motion related to a thrust deficit was observed.


2019 ◽  
Vol 35 ◽  
pp. 80-84
Author(s):  
P.M. Tembo ◽  
S. Khumalo ◽  
D.P. Chakawa ◽  
G. Danha ◽  
N. Hlabangana ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document