grinding media
Recently Published Documents


TOTAL DOCUMENTS

281
(FIVE YEARS 65)

H-INDEX

24
(FIVE YEARS 4)

Author(s):  
Moslem Mohammadi Soleymani

To assess the effects of the mill operating parameters such as mill speed, ball filling, slurry concentration and slurry filling on grinding process and size distribution of mill product, it was endeavored to build a pilot model with smaller size than the mill. For this aim, a pilot mill with 1 m × 0.5 m was implemented. There are 15 lifters with 50 mm height and face angle of 30˚. In the present work, the combination of the balls (40% of the balls with 60 mm diameter, 40% of the balls with 40 mm diameter and 20% of the balls with 25 mm diameter) was used as grinding media with 10%, 15%, 20% and 25% of the total volume of the mill. The experiments were carried out at 60%, 70%, 80% and 90% of the critical speed. The feed of the mill is copper ore with the size smaller than 25.4 mm, which d80 and d50 of them are 12.7 and 8 mm, respectively and slurries with 40%, 50%, 60%, 70% and 80% of solid and the slurry filling between 0.5 and 2.5. The results showed that the best grinding and grading occurs at 70–80% of the critical speed and ball filling of 20–25%. Optimized grinding was observed when the slurry volume is 1–1.5 times of the ball bed voidage volume and the slurry concentration is between 60% and 70%. The mill grinding mechanism in this work is a combination of both impact and abrasion mechanisms.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Liang Si ◽  
Yijun Cao ◽  
Guixia Fan

The breakage and liberation of minerals are the key to fluidized mining for minerals. In the ball milling process, steel balls function as not only a grinding action implementer but also energy carrier to determine the breakage behavior of ores and the production capacity of the mill. When ground products present a much coarse or much fine particle size distribution, the separation process will suffer, resulting in inefficient recovery of useful minerals. Optimal control of the particle size distribution of the products is therefore essential, but the complexity and randomness of ball mill grinding make it difficult to determine the appropriate ball size. To solve the problem in the precise measurement of grinding ball diameters, this paper carried out magnetite grinding experiments with grinding balls of different diameters under the same grinding conditions to study the influence pattern of steel ball diameters on the particle break behavior, the particle size distribution of ground products, and the mineral liberation degree distribution. The research proposed on the matching relation between the ball size and the quality of ground products is essential for improving the ground product quality and reducing energy consumption.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012201
Author(s):  
BRN Murthy ◽  
Ravichandra Rangappa

Abstract High chromium balls are recognized as better grinding media in terms of wear rates than forged steel balls, which are conventional grinding media in the milling process of iron ore. In this research work, the wear rate of high chromium balls and austempered ductile iron (ADI) balls as crushing media in a ball mill are compared. ADI are prepared by austenitizing the spheroidal graphite (SG) iron balls at 920 °C for one hour, and step austempering heat treatments were given, which includes the first step austenitizing at 300 °C for 15 min, followed by a second step austenitizing at 400 °C for 60 min. The wear rates were estimated when both balls were used separately by maintaining the same machining conditions and when the balls are mixed. The grinding wear conduct of both materials is evaluated for wear loss in wet grinding conditions. The experimental results reveal that the performance of ADI balls is better than high chromium balls when tested separately and mixed. Results also indicate that the wear rates/revolutions will decrease when the operating period increases.


2021 ◽  
Vol 173 ◽  
pp. 107198
Author(s):  
Ting Wang ◽  
Wenjie Zou ◽  
Ruijing Xu ◽  
Huaibing Xu ◽  
Le Tao ◽  
...  
Keyword(s):  

2021 ◽  
Vol 410 ◽  
pp. 330-335
Author(s):  
Petr O. Bykov ◽  
Maral Zh. Tussupbekova ◽  
Dinara R. Absolyamova

The paper investigates the technology of production of steel billets continuously cast billets for rolling balls of large diameter. In Kazakhstan, in connection with the development of new copper deposits such as Aktogay and Bozshakol, the need for large diameter steel grinding balls for primary ore processing has increased. The main problem in the operation of large diameter grinding balls is the tendency of the grinding media to break during operation. The authors of the work investigated the process of production of steel billets continuously cast billets with a cross section of 150 × 150 mm for rolling balls of large diameter (d 125 mm) in the PB LLP "KSP Steel", which showed that the breaking of grinding balls is initiated mainly by the presence of internal discontinuities (gas axial looseness) in continuously cast billets. Studies have shown that the technological scheme for the production of grinding balls with a diameter of 125 mm from continuously cast billets with a section of 150 × 150 mm, including steel smelting in an arc furnace with steel finishing on a ladle-furnace unit, deoxidation with aluminum and degassing in a ladle vacuum apparatus, casting steel in a closed jet on a continuous casting and further production of rolled stock on a rough rolling mill ensures the absence of internal discontinuities (gas bubbles, axial looseness) in the workpieces and ensures the production of high quality balls.


Author(s):  
Abira Rashid

Shrinkage porosity or cavity are associated with the solidification of the metal either due to gas/air entrapment or when the shrinkage occurring during solidification is not entirely compensated by the riser. Shrinkage cavities occurring in the casting reduces its strength which leads to unfulfillment of the desired serviceability. In this paper, casting design has been modified using the DISA manual to achieve directional solidification which directly relates to improvement of casting quality. The running of metal from pouring basin into casting along with solidification has been analysed through PROCAST which is a casting simulation software based on Finite Element Method and CAFE (Cellular Automata Finite Element) Model. The feeding system of the casting has been modified in terms of shape and volume to minimize air aspiration effect and promote directional solidification. The model used is of grinding media balls casting of high chromium cast iron. The feeding pattern, feeding velocity and solidification with respect to pouring temperature, pouring rate, ambient temperature and film coefficient has been analysed. The final optimum range of all parameters with corresponding minimum shrinkage porosity in casting was obtained. Main aim was to minimize shrinkage porosity in the main casting, ignoring gating and feeding system. The actual minimization of shrinkage porosity comes out around 56 %.


2021 ◽  
Vol 3 (8) ◽  
Author(s):  
Zachary P. Morehouse ◽  
Gabriella L. Ryan ◽  
Caleb M. Proctor ◽  
Akelachi Okparanta ◽  
Will Todd ◽  
...  

AbstractThe use of Cannabis sativa, or Hemp, in commercial, recreational, and pharmacological applications is on the rise in the United States and worldwide. Many of these applications have guidelines associated with them dependent on the concentration of cannabinoid molecules that keep the products classified as hemp versus marijuana or that allow the producer to comment on the purity and potency of their product. Herein, we propose a method for homogenization of hemp that results in small particle sizes, uniform samples, and does not alter the cannabinoid concentrations during processing, allowing for optimal and reproducible potency testing. Using a novel “active grinding media” we homogenized commercially available hemp to analyze approximately 100 mg samples of homogenate via sieve analysis and high-performance liquid chromatography to assess the resulting size and potency of the sample when using this methodology. When processing hemp samples with our proposed methodology, we have demonstrated the ability to produce 60.2% of all particles < 1.25 mm with increased cannabinoid recovery compared to homogenates with larger average particle sizes. Maintaining sample temperatures below 35 °C during processing, we showed that our method does not thermally induce decarboxylation reactions that would result in major cannabinoid profile changes. We have developed a method for hemp processing via homogenization that does not alter the cannabinoid profile during processing, while consistently producing small particle sizes in a uniformly processed sample. This method allows for optimal and reproducible hemp processing when evaluating hemp and hemp-based products being brought to commercial markets.


Sign in / Sign up

Export Citation Format

Share Document