Clay mineralogy of the Tertiary onshore and offshore strata of the British Isles

Clay Minerals ◽  
2006 ◽  
Vol 41 (1) ◽  
pp. 5-46 ◽  
Author(s):  
J. M. Huggett ◽  
R. W. O'B. Knox

AbstractTertiary sediments are of restricted occurrence in the onshore British Isles but occur extensively offshore, attaining thicknesses of ~4 km in the Faroe—Shetland Basin and ~3 km in the North Sea Basin. Clay mineral stratigraphic studies of the North Sea Paleocene to Lower Miocene successions show a dominance of smectite (and smectite-rich illite-smectite) with minor illite, kaolin and chlorite. Abundant smectite in the Paleocene and Eocene reflects alteration of volcanic ash derived from pyroclastic activity associated with the opening of the North Atlantic between Greenland and Europe. However, the persistence of high smectite into the Oligocene and Middle Miocene indicates that smectite-rich soils on adjacent land areas may also have been an important source of detrital clays. An upwards change to illite-dominated assemblages in the Middle Miocene reflects higher rates of erosion and detrital clay supply, with a subsequent increase in chlorite reflecting climatic cooling. The persistence of smectite-rich assemblages to depths of >3000 m in the offshore indicates little burial-related diagenesis within the mudstone succession, possibly as a consequence of over-pressuring. Despite the importance of Paleocene and Eocene sandstones as hydrocarbon reservoirs in the North Sea and Faroe-Shetland basins, there are few published details of the authigenic clays. The principal clay cements in these sandstones are kaolin and chlorite, with only minor illite reported.The offshore successions provide a valuable background to the interpretation of the more intensively studied, but stratigraphically less complete, onshore Tertiary successions. The most extensive onshore successions occur in the London and Hampshire basins where sediments of Paleocene to earliest Oligocene age are preserved. Here clay assemblages are dominated by illite and smectite with subordinate kaolin and chlorite. The relatively large smectite content of these successions is also attributed primarily to the alteration of volcanic ash. Associated non-smectitic clays are largely detrital in origin and sourced from areas to the west, with reworking of laterites and “china clay” deposits developed over Cornish granites. Authigenic clays include glauconite (sensu lato), early diagenetic kaolin that has replaced muscovite (principally in the London Clay Formation of the London Basin) and smectite that has replaced ash. Pedogenesis has extensively modified the assemblages in the Reading Formation and Solent Group. Tertiary sediments are largely missing from onshore northern and western Britain, but clays and sands of Eocene and Oligocene age are locally preserved in small fault-bounded basins. Here, clay assemblages are dominated by kaolin with minor illite.

Clay Minerals ◽  
2000 ◽  
Vol 35 (1) ◽  
pp. 25-55 ◽  
Author(s):  
C. V. Jeans ◽  
D. S. Wray ◽  
R. J. Merriman ◽  
M. J. Fisher

AbstractThe nature and origin of authigenic clay minerals and silicate cements in the Jurassic and Cretaceous sediments of England and the North Sea are discussed in relation to penecontemporaneous volcanism in and around the North Sea Basin. Evidence, including new REE data, suggests that the authigenic clay minerals represent the argillization of volcanic ash under varying diagenetic conditions, and that volcanic ash is a likely source for at least the early silicate cements in many sandstones. The nature and origin of smectite-rich, glauconite-rich, berthierine-rich and kaolin-rich volcanogenic clay mineral deposits are discussed. Two patterns of volcanogenic clay minerals facies are described. Pattern A is related to ash argillization in the non-marine and marine environments. Pattern B is developed by the argillization of ash concentrated in the sand and silt facies belts in the seas bordering ash-covered islands and massifs. It is associated with regression/ transgression cycles which may be related to thermal doming and associated volcanism, including the submarine release of hydrothermal fluids rich in Fe. The apparent paucity of volcanogenic clay deposits in the Jurasssic and Early Cretaceous sediments of the North Sea is discussed.


Antiquity ◽  
2017 ◽  
Vol 91 (358) ◽  
pp. 1095-1097
Author(s):  
Hans Peeters

Over the past decade or so, the submerged prehistoric archaeology and landscapes in the area that is known to us today as the North Sea have received increasing attention from both archaeologists and earth scientists. For too long, this body of water was perceived as a socio-cultural obstacle between the prehistoric Continent and the British Isles, the rising sea level a threat to coastal settlers, and the North Sea floor itself an inaccessible submerged landscape. Notwithstanding the many pertinent and pervasive problems that the archaeology of the North Sea still needs to overcome, recent research has made clear that these rather uninspiring beliefs are misplaced.


2000 ◽  
Vol 137 (4) ◽  
pp. 381-394 ◽  
Author(s):  
S. LOUWYE ◽  
J. DE CONINCK ◽  
J. VERNIERS

Detailed dinoflagellate cyst analysis of the Lower–Middle Miocene Berchem Formation at the southernmost margin of the North Sea Basin (northern Belgium) allowed a precise biostratigraphical positioning and a reconstruction of the depositional history. The two lower members of the formation (Edegem Sands and decalcified Kiel Sands) are biostratigraphically regarded as one unit since no significant break within the dinocyst assemblages is observed. The base of this late (or latest) Aquitanian–Burdigalian unit coincides with sequence boundary Aq3/Bur1 as defined by Hardenbol and others, in work published in 1998. A hiatus at the Lower–Middle Miocene transition separates the upper member (the Antwerpen Sands) from the underlying member. The greater part of the Antwerpen Sands were deposited in a Langhian (latest Burdigalian?)–middle Serravallian interval. The base of this unit coincides with sequence boundary Bur5/Lan1. Biostratigraphical correlation points to a diachronous post-depositional decalcification within the formation since parts of the decalcified Kiel Sands can be correlated with parts of the calcareous fossil-bearing section, up to now interpreted as Antwerpen Sands. The dinoflagellate cyst assemblages are dominated by species with a inner neritic preference, although higher numbers of oceanic taxa in the upper part of the formation indicate incursions of oceanic watermasses into the confined depositional environment of the southern North Sea Basin.


Author(s):  
S. H. Coombs ◽  
C. E. Mitchell

The distribution, abundance and seasonal occurrence of larvae of mackerel (Scomber scombrus L.) are described from routine Continuous Plankton Recorder (CPR) sampling around the British Isles over the period 1948–78, and from more intensive CPR sampling in the Celtic Sea in 1977. There were two main areas of larval concentration: in the North Sea and over and adjacent to the Celtic Plateau; subsidiary aggregations were observed to the northwest of Ireland and to the west of Norway. There were some similarities between the distribution of larvae around the British Isles and that of adult Calanus spp. In the North Sea there was a southerly shift of larval distribution over the period 1948–77; over a similar period the abundance of larvae increased to reach high numbers by the late 1950s and subsequently declined after the mid-6os. To the south-west of the British Isles numbers of larvae showed a long-term decline. The long-term trends of distribution and abundance are discussed in relation to concurrent biological and environmental change. The clearest relationship was found between the numbers of mackerel larvae in the North Sea and sea-surface temperature in the North Atlantic, which suggests a common causative agent for both sets of observations; also, there was a weak relationship with both spawning stock biomass and sea-surface temperature at the spawning areas. In the North Sea the seasonal occurrence of larvae was from May to August, the majority being taken in June and July; over the period 1948–77 the seasonal time of occurrence of highest numbers of larvae has remained relatively constant. In the Celtic Sea the seasonal occurrence of larvae was spread over a longer period, from March to August, with relatively high numbers from March to June; over the period 1950–78 the time of occurrence has been variable, possibly with a tendency towards later timing in more recent years.


2003 ◽  
Vol 20 (1) ◽  
pp. 549-555 ◽  
Author(s):  
R. D. Hayward ◽  
C. A. L. Martin ◽  
D. Harrison ◽  
G. Van Dort ◽  
S. Guthrie ◽  
...  

AbstractThe Flora Field straddles Blocks 31/26a and 31/26c of the UK sector of the North Sea on the southern margin of the Central Graben. The field is located on the Grensen Nose, a long-lived structural high, and was discovered by the Amerada Hess operated well 31/26a-12 in mid-1997.The Flora Field accumulation is reservoired within the Flora Sandstone, an Upper Carboniferous fluvial deposit, and a thin Upper Jurassic veneer, trapped within a tilted fault block. Oil is sourced principally from the Kimmeridge Clay Formation of the Central Graben and is sealed by overlying Lower Cretaceous marls and Upper Cretaceous Chalk Group.Reservoir quality is generally good with average net/gross of 85% and porosity of 21%, although permeability (Kh) exhibits a great deal of heterogeneity with a range of 0.1 to <10000mD (average 300 mD). The reservoir suffers both sub-horizontal (floodplain shales) and vertical (faults) compartmentalization, as well as fracturing and a tar mat at the oil-water contact modifying flow and sweep of the reservoir. Expected recoverable reserves currently stand at 13 MMBBL


2020 ◽  
Vol 52 (1) ◽  
pp. 691-704 ◽  
Author(s):  
E. E. Taylor ◽  
N. J. Webb ◽  
C. J. Stevenson ◽  
J. R. Henderson ◽  
A. Kovac ◽  
...  

AbstractThe Buzzard Field remains the largest UK Continental Shelf oil discovery in the last 25 years. The field is located in the Outer Moray Firth of the North Sea and comprises stacked Upper Jurassic turbidite reservoirs of Late Kimmeridgian–Mid Volgian age, encased within Kimmeridge Clay Formation mudstones. The stratigraphic trap is produced by pinchout of the reservoir layers to the north, west and south. Production commenced in January 2007 and the field has subsequently produced 52% over the estimated reserves at commencement of development, surpassing initial performance expectations. Phase I drilling was completed in 2014 with 38 wells drilled from 36 platform slots. Platform drilling recommenced in 2018, followed in 2019 by Phase II drilling from a new northern manifold location.The evolution of the depositional model has been a key aspect of field development. Integration of production surveillance and dynamic data identified shortcomings in the appraisal depositional model. A sedimentological study based on core reinterpretation created an updated depositional model, which was then integrated with seismic and production data. The new depositional model is better able to explain non-uniform water sweep in the field resulting from a more complex sandbody architecture of stacked channels prograding over underlying lobes.


Sign in / Sign up

Export Citation Format

Share Document