Okayamalite, Ca2B2SiO7, a new mineral, boron analogue of gehlenite

1998 ◽  
Vol 62 (5) ◽  
pp. 703-706 ◽  
Author(s):  
Satoshi Matsubara ◽  
Ritsuro Miyawaki ◽  
Akira Kato ◽  
Kazumi Yokoyama ◽  
Akiyoshi Okamoto

AbstractOkayamalite, Ca2B2SiO7, tetragonal, P4̄21m, a = 7.116, c = 4.815 Å, Z = 2, is a new member of melilite group, the boron analogue of gehlenite. Electron microprobe analysis gave CaO 46.28, B2O3 28.50, SiO2 24.24, Al2O3 0.36, total 99.38 wt.%, corresponding to Ca2.01B2.00Si0.98Al0.02O7, a natural counterpart of Ca2B2SiO7 known only synthetically. The strongest lines in the X-ray powder diffraction pattern are 3.479 (40)(111), 2.862 (55)(201), 2.654 (100)(211), 2.129 (20)(301), 1.920 (35)(212), 1.644 (29)(312), very close to those of the synthetic material (a = 7.115, and c = 4.812 ). It is creamy white in colour with an earthy appearance due to the fine grain size. Streak white, cleavage not observed. Hardness ∼5½. Density calculated on the ideal formula is 3.30 g/cm3. It is optically uniaxial negative with ω = 1.700, and ɛ = 1.696. It occurs as patches of a few millimetres across in grey homogeneous-looking aggregate of wollastonite, vesuvianite, calcite and johnbaumite from Fuka mine, Bicchu-cho, Okayama Prefecture, Japan. The patches consist of very fine grains of the mineral up to 30 μm. Okayamalite is considered to be a product after the reaction formula: CaCO3 + CaSiO3 + B2O3 = Ca2B2SiO7 + CO2, arising from boron metasomatism of a wollastonite-calcite aggregate. The name is for the prefecture.

1998 ◽  
Vol 62 (04) ◽  
pp. 521-525 ◽  
Author(s):  
I. Kusachi ◽  
Y. Takechi ◽  
C. Henmi ◽  
S. Kobayashi

Abstract Parasibirskite, with the ideal formula Ca2B2O5·H2O, is a new mineral species found at Fuka, Okayama Prefecture, Japan. It is a polymorph of sibirskite, CaHBO3, and occurs as subparallel aggregates of tabular crystals up to 40 × 20 × 3 µm in size. Associated minerals are takedaite, olshanskyite, sibirskite, frolovite and calcite. The mineral is white, and has a weak pearly luster. Optically, the mineral is biaxial positive, α 1.556(2), β 1.593(2), γ 1.663(2) (λ 589 nm). The Vickers microhardness of aggregates is 121 kg mm−2. The mineral is monoclinic with space group of P21/m, a 6.722(4), b 5.437(2), c 3.555(2) Å, β 93.00(5)°, V 129.8(2), Å3. The strongest lines in the X-ray powder pattern [d in Å (I)(hkl)] are 2.237(100)(300), 6.73(70)(100), 2.975(60)(011), 3.354(30)(200), 2.855(20)(210) and 1.776(20) (002). Wet chemical analysis, electron-microprobe analysis and ICP emission spectrometry give the values CaO 56.06 %, B2O3 34.10 %, H2O 9.97 % and total 100.13%. The empirical formula calculated on the basis of O = 6 is Ca1.985B1.945O4.901·1.099H2O, for Z = 1, Dcalc 2.54 and Dmeas 2.50(1) g cm−3. Parasibirskite is formed by hydrothermal alteration of takedaite.


2008 ◽  
Vol 72 (5) ◽  
pp. 1083-1101 ◽  
Author(s):  
W. H. Paar ◽  
Y. Moëlo ◽  
N. N. Mozgova ◽  
N. I. Organova ◽  
C. J. Stanley ◽  
...  

AbstractCoiraite, ideally (Pb,Sn2+)12.5As3Fe2+Sn4+S28, occurs as an economically important tin ore in the large Ag-Sn-Zn polymetallic Pirquitas deposit, Jujuy Province, NW-Argentina. The new mineral species is the As derivative of franckeite and belongs to the cylindrite group of complex Pb sulphosalts with incommensurate composite-layered structures. It is a primary mineral, frequently found in colloform textures, and formed from hydrothermal solutions at low temperature. Associated minerals are franckeite, cylindrite, pyrite-marcasite, as well as minor amounts of hocartite, Ag-rich rhodostannite. arsenopyrite and galena. Laminae of coiraite consist of extremely thin bent platy crystals up to 50 urn long. Electron microprobe analysis (n = 31) gave an empirical formula Pb11.21As2.99Ag0.13Fe1.10Sn6.13S28.0 close to the ideal formula (Pb11.3Sn2+1.2)Σ=12.5As3Fe2+Sn4+S28. Coiraite has two monoclinic sub-cells, Q (pseudotetragonal) and H (pseudohexagonal). Q: a 5.84(1) Å, b 5.86(1) Å, c 17.32(1) Å, β 94.14(1)°, F 590.05(3) Å3, Z = 4, a:b:c = 0.997:1:2.955; H (orthogonal setting): a 6.28(1) Å, b 3.66(1) Å, c 17.33(1) Å, β 91.46(1)°, V398.01(6) Å3, Z = 2, a∶b∶c = 1.716∶1∶4.735. The strongest Debye-Scherrer camera X-ray powder-diffraction lines [d in Å, (I), (hkl)] are: 5.78, (20), (Q and H 003); 4.34, (40), (Q 004); 3.46, (30), (Q and H 005); 3.339, (20), (Q 104); 2.876, (100), (Q and H 006); 2.068, (60), (Q 220).


1986 ◽  
Vol 50 (355) ◽  
pp. 129-135 ◽  
Author(s):  
W. H. Paar ◽  
Kurt Mereiter ◽  
R. S. W. Braithwaite ◽  
Paul Keller ◽  
P. J. Dunn

AbstractChenite, a new lead-copper secondary mineral, has been found on specimens from the Leadhills area, Scotland. It is associated with caledonite, linarite, leadhillite, susannite, and other species, on oxidized galena with chalcopyrite. Electron microprobe analysis yielded PbO 74.5, CuO 7.8, SO3 13.3, H2O 4.4 (by difference), sum = 100 wt. %. The empirical formula (based on 14 oxygens) is Pb3.98Cu1.17S1.98O14H5.82; the ideal formula is Pb4Cu(SO4)2(OH)6, which requires PbO 75.2, CuO 6.7, SO3 13.5, H2O 4.6, sum = 100 wt. %.Infra-red spectroscopy showed the presence of only and OH− ions, with no H2O.Chenite is triclinic, P1 or P̄, with a = 5.791(1), b = 7.940(1), c = 7.976(1) Å, α = 112.02(1), β = 97.73(1), γ = 100.45(1)°, V = 326.0 Å3, Z = 1. The strongest lines in the X-ray powder diffraction pattern (d, I/Io, hkl) are: 5.55, 7, 100; 4.32, 6, 11; 3.60, 10 002; 3.41, 9, 10; 3.30, 5, 02; 3.00, 5, 111; 2.80, 7, 12; 2.07, 6, 211/21/13; 1.778, 5, 3/23.Chenite forms minute, singly terminated, transparent to translucent sky-blue crystals from 0.1 to over 1 mm long, elongated approximately [032]. Twenty different forms (pinacoids) have been identified on the four crystals studied. A good cleavage on {100}, and traces of a second on {001}, can be observed. Optically, chenite is biaxial negative, 2 V(measured) = 67±1°, 2 V(calc.) = 68° (Na). The refractive indices are α 1.871±0.005, β 1.909±0.005, γ 1.927±0.005 (Na). Dispersion is strong, r≫v. The mineral is weakly pleochroic. H (Mohs) ∼ 2½. D = 5.98, and calculated Dx = 6.044 g cm−3.


2013 ◽  
Vol 77 (7) ◽  
pp. 3027-3037 ◽  
Author(s):  
C. Biagioni ◽  
P. Orlandi ◽  
F. Nestola ◽  
S. Bianchin

AbstractThe new mineral species oxycalcioroméite, Ca2Sb5+2O6O, has been discovered at the Buca della Vena mine, Stazzema, Apuan Alps, Tuscany, Italy. It occurs as euhedral octahedra, up to 0.1 mm in size, embedded in dolostone lenses in the baryte + pyrite + iron oxides ore. Associated minerals are calcite, cinnabar, derbylite, dolomite, hematite, 'mica', pyrite, sphalerite and 'tourmaline'. Oxycalcioroméite is reddish-brown in colour and transparent. It is isotropic, with ncalc = 1.950.Electron microprobe analysis gave (wt.%; n = 6) Sb2O5 63.73, TiO2 3.53, SnO2 0.28, Sb2O3 10.93, V2O3 0.68, Al2O3 0.28, PbO 0.68, FeO 5.52, MnO 0.13, CaO 13.68, Na2O 0.83, F 1.20, O = F – 0.51, total 100.96. No H2O, above the detection limit, was indicated by either infrared or micro-Raman spectroscopies. The empirical formula, based on 2 cations at the B site, is (Ca1.073Fe2+0.338Sb3+0.330Na0.118Pb0.013Mn0.008)Σ=1.880(Sb5+1.734Ti0.194V0.040Al0.024Sn0.008)Σ=2.000(O6.682F0.278)Σ6.960. The crystal structure study gives a cubic unit cell, space group Fdm, with a 10.3042(7) Å, V 1094.06(13) Å3, Z = 8. The five strongest X-ray powder diffraction lines are [d(Å)I(visually estimated)(hkl)]: 3.105(m)(311); 2.977(s)(222); 2.576(m)(400); 1.824(ms)(440); and 1.556(ms)(622). The crystal structure of oxycalcioroméite has been solved by X-ray single-crystal study on the basis of 114 observed reflections, with a final R1 = 0.0114. It agrees with the general features of the members of the pyrochlore supergroup.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1095-C1095
Author(s):  
Marcelo Andrade ◽  
Javier Ellena ◽  
Daniel Atencio

Fluorcalciomicrolite, Ca1.5Ta2O6F, and hydroxycalciomicrolite, Ca1.5Ta2O6(OH), are new microlite-group [1] minerals found in the Volta Grande pegmatite, Nazareno, Minas Gerais, Brazil. Both occur as octahedral and rhombododecahedral crystals. The crystals are colourless, yellow and translucent, with vitreous to resinous luster. The densities calculated for fluorcalciomicrolite [2] and hydroxycalciomicrolite are 6.160 and 6.176 g/cm3, respectively. The empirical formulae obtained from electron microprobe analysis are (Ca1.07Na0.81□0.12)Σ2(Ta1.84Nb0.14Sn0.02)Σ2[O5.93(OH)0.07]Σ6.00[F0.79(OH)0.21] for fluorcalciomicrolite and (Ca1.48Na0.06Mn0.01)Σ1.55(Ta1.88Nb0.11Sn0.01)Σ2O6[(OH)0.76F0.20O0.04] for hydroxycalmicrolite. Fluorcalciomicrolite is cubic, space group Fd-3m, a = 10.4191(6) Å, V = 1131.07(11) Å3, and Z = 8. Hydroxycalciomicrolite is also cubic; however, the presence of P-lattice is confirmed by the large number of weak reflections observed by X-ray diffraction. As a result, the space group is P4332 and unit-cell parameters are a = 10.4211(8) Å, and V = 1131.72(15) Å3.


1999 ◽  
Vol 63 (1) ◽  
pp. 13-16 ◽  
Author(s):  
F. C. Hawthorne ◽  
M. A. Cooper ◽  
D. I. Green ◽  
R. E. Starkey ◽  
A. C. Roberts ◽  
...  

AbstractWooldridgeite, ideally Na2(P2O7)2(H2O)10, orthorhombic, a = 11.938(1), b = 32.854(2), c = 11.017(1) Å , V = 4321.2(8) Å3, a:b:c = 0.3634:1:0.3353, space group Fdd2, Z = 8, is a new mineral from Judkins Quarry, Nuneaton, Warwickshire, England. Associated minerals are calcite, chalcopyrite, bornite and baryte. It occurs as equant crystals forming rhombic dipyramids; no twinning was observed. It is transparent blue-green with a very pale-blue streak, a vitreous lustre, and does not fluoresce under long- or short-wave ultraviolet light. Wooldridgeite has a Mohs hardness of 2–3, is brittle with an irregular fracture, and has no cleavage. The calculated density is 2.279 g/cm3. In transmitted light, wooldridgeite is colourless, non-pleochroic, and shows no dispersion. It is biaxial negative with α = 1.508(1), β = 1.511(1), γ = 1.517(1), 2V(meas.) = 76.2(5), 2V(calc.) = 71(10)8, X = b, Y = c, Z = a. The strongest five reflections in the X-ray powder diffraction pattern are [d(Å), (I), (hkl)]: 8.23(30)(040), 6.52(100)(131), 4.05(40)(260), 3.255(40)(262); 2.924(40)(371). Electron-microprobe analysis of wooldridgeite gave P2O5 39.37, CuO 20.24, MgO 0.24, CaO 7.73, Na2O 8.33, K2O 0.17, H2O(calc.) 24.72, sum 100.80 wt.%; the corresponding unit formula (based on 24 anions) is (Na1.96K0.03)Ca1.00(Cu1.85Mg0.04)P4.04O14(H2O)10 where the H2O groups were assigned from knowledge of the crystal structure; the infrared absorption spectrum also indicates the presence of H2O in the structure. The mineral is named for James Wooldridge (1923–1995), a fervent amateur mineral collector who discovered this mineral.


1979 ◽  
Vol 43 (328) ◽  
pp. 463-467 ◽  
Author(s):  
R. Van Tassel ◽  
A.-M. Fransolet ◽  
K. Abraham

SummaryDrugmanite occurs as rare colourless transparent platy crystals, up to 0.2 mm, aggregated in bunches, in vugs of a mineralized and silicified limestone. Hardness < 6. Crystals monoclinic, forms {001} {110}, parameters from indexed X-ray powder pattern (and monocrystal measurements): a = 11.110 (11.111) Å, b = 7.976 (7.986), c = 4.644 (4.643), β = 90°18′ (90°.41°). Space group P21/a with Z = 2 giving Dcalc = 5.55. Strongest lines are 4.63 Å (9), 3.752 (IO), 3.350 (8), 3.247 (8), 2.912 (9). Mean refractive index 1.88 from reflectance measurements. Strong dispersion r < v, optic axial plane // (olo), 2Vα = 33±2°. Electron microprobe analysis gave P 8.89, Al 0.85, Fe 6.19, Pb 59.76%, leading to Pb4.02 Al0.45)P4.00O17.02·3H2O or Pb2 (Al0.22) (PO4)2 (OH)·H2O. Associated minerals are pyromorphite, anglesite, corkite and phosphosiderite. Named for J. Drugman, Belgian mineralogist (1875–1950).


2015 ◽  
Vol 79 (2) ◽  
pp. 253-260 ◽  
Author(s):  
Roberta Oberti ◽  
Massimo Boiocchi ◽  
Frank C. Hawthorne ◽  
Neil A. Ball ◽  
George E. Harlow

AbstractMagnesio-arfvedsonite, theCFe3+-dominant analogue of eckermannite, has been found in a sample of “szechenyite” in the mineral collection of the American Museum of Natural History (AMNH H35024). It comes from the northern part of the Jade Mine Tract near Hpakan, Kachin State, Myanmar. Associated minerals are kosmochlor–jadeite solid-solution pyroxene and clinochlore. The ideal formula of magnesio-arfvedsonite isANaBNa2C(Mg4Fe3+)TSi8O22W(OH)2, and the empirical formula derived from electron microprobe analysis and single-crystal structure refinement for the sample of this work isA(Na0.96K0.04)Σ=1.00B(Na1.57Ca0.40Fe0.022+Mn0.01)Σ=2.00C(Mg4.26Fe0.192+Fe0.413+Al0.11Ti0.034+)Σ=5.00T(Si7.99Al0.01)Σ=8.00O22W[F0.02(OH)1.98]Σ=2.00. The unit-cell dimensions area= 9.867(1),b= 17.928(2),c= 5.284(1) Å, β = 103.80(2)°,V= 907.7 (2) Å3,Z= 2. Magnesio-arfvedsonite is biaxial (–), with α = 1.624, β = 1.636, γ = 1.637, all ± 0.002 and 2Vobs= 36(1)°, 2Vcalc= 32°. The ten strongest reflections in the X-ray powder pattern [dvalues (in Å),I, (hkl)] are: 2.708, 100, (151); 3.399, 68, (131); 3.144, 63, (310); 2.526, 60, (202); 8.451, 46, (110); 3.273, 39, (240); 2.167, 37, (261); 2.582, 34, (061); 2.970, 34, (221); 2.326, 33, [(251) (421)].


Clay Minerals ◽  
2013 ◽  
Vol 48 (1) ◽  
pp. 143-148 ◽  
Author(s):  
F. L. Theiss ◽  
G. A. Ayoko ◽  
R. L. Frost

AbstractStichtite is a naturally occurring layered double hydroxide (LDH) with the ideal chemical formula Mg6Cr2CO3(OH)16.4H2O. It has received less attention in the literature than other LDHs and is often described as a rare mineral; however, abundant deposits of the mineral do exist. In this article we aim to review a number of significant publications concerning the mineral stichtite, including papers covering the discovery, geological origin, synthesis and characterizsation of stichtite. Characterization techniques reviewed include powder X-ray diffraction (XRD), infrared spectroscopy (IR), near infrared spectroscopy (NIR), Raman spectroscopy (Raman), thermogravimetry (TG) and electron microprobe analysis.


2016 ◽  
Vol 80 (2) ◽  
pp. 269-275 ◽  
Author(s):  
Roberta Oberti ◽  
Massimo Boiocchi ◽  
Frank C. Hawthorne ◽  
Neil A. Ball ◽  
Luigi Chiappino

AbstractMagnesio-ferri-fluoro-hornblende has the ideal formula A□B Ca2C(Mg4Fe3+)T(Si7Al)O22WF2(Hawthorne et al., 2012). The holotype sample described in this work occurs as prismatic crystals in vugs of volcanic rocks (Seruci ignimbrites), found along the coast road ∼5.5 km northeast of Portoscuso, Cagliari, Sardinia; associated minerals are tridymite, todorokite, magnetite, and hematite. The name and the mineral were approved by the IMA CNMNC (2014-091). Holotype magnesio-ferri-fluoro-hornblende is monoclinic, space group C2/m, a = 9.839(5), b = 18.078(9), c = 5.319(3) Å, β = 104.99(3)°, V = 913.9(9) Å3, Z = 2. The density calculated from the empirical formula is 3.315 g cm–3. In plane-polarized light, magnesio-ferri-fluoro-hornblende is pleochroic, X = pale grey (least), Y = dark grey (most), Z = pale brownish grey (intermediate); X^a= 47.6° (β obtuse), Y // b, Z^c= 33.4° (β acute). It is biaxial negative, α = 1.669, β = 1.676, γ = 1.678, all ±0.002; 2Vobs= 74(1)°, 2Vcalc= 56°. The strongest eight lines in the powder X-ray diffraction pattern are [d in Å (I)(hkl)]: 2.711 (100)(151), 8.412 (89)(110), 3.121 (64)(310), 2.553 (61)(2̄02), 3.389 (55)(131), 2.599 (45)(061), 2.164 (36)(261), and 2.738 (34)(3̄31). Electron-microprobe analysis of the refined crystal gave SiO245.34, Al2O36.18, TiO21.22, FeO 15.24, Fe2O36.27, MgO 9.71, MnO 0.78, ZnO 0.06, CaO 10.18, Na2O 1.35, K2O 1.15, F 3.22, Cl 0.30, H2Ocalc 0.37, sum 99.95 wt.%. The empirical formula unit, calculated on the basis of 24 (O, OH, F, Cl) apfu with (OH + F + Cl) = 2 apfu is: (Na0.15K0.22)∑0.37(Na0.25Ca1.66Mn0.09)∑2.00(Mg2.20Fe2+1.94Mn0.01Zn0.01Fe3+0.72Ti0.13)∑5.01(Al1.11Si6.89)∑8.00O22[F1.55(OH)0.37Cl0.08)∑2.00.


Sign in / Sign up

Export Citation Format

Share Document