Expanding behaviour, structural disorder, regular and random irregular interstratification of 2:1 layer-silicates studied by high-resolution images of transmission electron microscopy

Clay Minerals ◽  
1986 ◽  
Vol 21 (5) ◽  
pp. 827-859 ◽  
Author(s):  
H. Vali ◽  
H. M. Köster

AbstractExpanding and non-expanding layers of interstratified clay minerals have been examined by high-resolution transmission electron microscopy. Permanent expansion of swelling layers under the electron beam was achieved by intercalation of n-alkylammonium ions, especially the octadecylammonium ion. Oriented flakes of clay minerals were prepared by embedding the expanded or non-expanded clay minerals in epoxy resin, followed by centrifugation before hardening of the resin. The minerals were then cut perpendicular to 001 using an ultramicrotome. Crystals of macroscopic trioctahedral vermiculites show homogeneous interplanar distances of 24 Å after intercalation of octadecylammonium ions. Crystals of dioctahedral soil vermiculites often show a central zone with non-expanding 10 Å layers; the outer zone shows a disturbed layer sequence extensively expanded by n-alkylammonium ions. After embedding in epoxy resin, vermiculites show stable 9·2 Å interplanar spacings but smectites expand to 13 Å. Montmorillonites of the Wyoming type show curved stacks of layers. Most of the layer stacks of montmorillonites of the Cheto type are split and disordered aggregates of single layers are formed. Crystals of illites and glauconites are built up of aggregated small stacks of 10 Å layers, the layer stacks consisting of 10 layers. Mostly the boundaries of the layer stacks are parallel to their 001 planes; sometimes low-angle boundaries are found. The dimensions of the layer stacks, ∼ 100 Å thick and some hundreds of Å in plane, are equal to the dimensions of the domains of coherent scattering of X-rays. The border layers between the layer stacks are identical with those 5 to 10% of layers which swell with glycerol or ethylene glycol during X-ray analysis. Some of the layer stacks of illite and glauconite crystals are expanded by octadecylammonium ions within a fortnight. The other stacks show unchanged 10 Å spacings. The different expanding behaviour of different layer stacks reflects the heterogeneity of the layer-charge distribution in the mica clay minerals. K-bentonites show the same expanding behaviour as illites and glauconites but the number of layers expanding with octadecylammonium ions is greater in K-bentonites than in illite crystals. Expanded mixed-layered minerals of the illite-smectite type show a different layer stacking sequence from illites. Random irregular stacking of mica layers with expanded layers are recognized rather than coherent stacks of mica layers. The crystals have a stepped morphology, perhaps effected by translations along the 001 plane. After reaction of the rectorite from Garland County with octadecylammonium ions, the non-expanded mica layers and the expanded smectite-like layers can be distinguished. The heterogeneity of the interlayer charges of the smectite layers is documented by the formation of alkyl double-layers with 17 Å spacings and alkyl triple-layers with 21 Å spaces in irregular sequence. The ‘rectorite’ from the Goto Mine expands nearly homogeneously in comparison with the rectorite from Garland County. After reaction with octadecylammonium ions, interplanar spacings of mostly 31 Å are observed but rarely spacings of 27 Å. The smectite layers of the corrensite from Kaubenheim are expanded by tetradecyl-ammonium ions to 18 Å spacings by formation of alkyl double-layers. A regular 1 : 1 layer structure of 14 Å chlorite layers and expanded 18 Å smectite layers with total spacing of 32 Å can be observed. Muscovite and pyrophyllite are not expandable by n-alkyl-ammonium ions within a fortnight. However, sporadic layers of celadonite crystals are expanded. Generally the 10 Å or 9·2 Å layers extend over the whole crystals of the three minerals. In celadonite crystals, disorder is caused sporadically by interrupted layers or slightly enlarged layer spacings.

Author(s):  
R. Gronsky

The phenomenon of clustering in Al-Ag alloys has been extensively studied since the early work of Guinierl, wherein the pre-precipitation state was characterized as an assembly of spherical, ordered, silver-rich G.P. zones. Subsequent x-ray and TEM investigations yielded results in general agreement with this model. However, serious discrepancies were later revealed by the detailed x-ray diffraction - based computer simulations of Gragg and Cohen, i.e., the silver-rich clusters were instead octahedral in shape and fully disordered, atleast below 170°C. The object of the present investigation is to examine directly the structural characteristics of G.P. zones in Al-Ag by high resolution transmission electron microscopy.


Carbon ◽  
2017 ◽  
Vol 117 ◽  
pp. 174-181 ◽  
Author(s):  
Chang’an Wang ◽  
Thomas Huddle ◽  
Chung-Hsuan Huang ◽  
Wenbo Zhu ◽  
Randy L. Vander Wal ◽  
...  

2016 ◽  
Vol 30 (20) ◽  
pp. 1650269 ◽  
Author(s):  
Thi Giang Le ◽  
Minh Tuan Dau

High-resolution transmission electron microscopy (HR-TEM) has been used to investigate the structural properties of GeMn/Ge nanocolumns multilayer samples grown on Ge(001) substrates by means of molecular beam epitaxy (MBE) system. Four bilayers with the spacer thickness in the range between 6 nm and 15 nm and 10 periods of bilayers of Ge[Formula: see text]Mn[Formula: see text]/Ge nanocolumn are presented. A simplified 2D model based on the theory of elastic constant interactions has been used to provide reasonable explanations to the vertical self-organization of GeMn nanocolumns in multilayers.


Sign in / Sign up

Export Citation Format

Share Document