High-Resolution Particle Size Analysis from Nanometres to Microns

Clay Minerals ◽  
1993 ◽  
Vol 28 (4) ◽  
pp. 531-537 ◽  
Author(s):  
P. McFadyen ◽  
D. Fairhurst

AbstractModem disc centrifuge technology has extended the range of application of sedimentation particle size analysis to include the submicron region. An overall size range of approximately 10 nm to 100 pm is now accessible. The principles of both the disc centrifuge photosedimentometer, which employs optical detection with full Mie light scattering corrections, and the X-ray disc centrifuge are described. Examples of their application to a variety of samples are given to illustrate the performance characteristics of the instruments including a direct comparison of resolving power with that of the laser diffraction technique.

Author(s):  
Stanley J. Vitton ◽  
Carl C. Nesbitt ◽  
Leon Y. Sadler

The hydrometer method is the standard method of grain size analysis used in geotechnical engineering. Although the hydrometer method provides accurate grain size distributions and is relatively easy to conduct, it takes a minimum of 2 days to complete and is subject to operator error. In studies where small-magnitude changes or more rapid results are required, an alternative method to hydrometer testing is to use an automated particle size analysis instrument employing X-ray absorption. This technique passes a finely collated X-ray beam through a suspension of settling particle in a fluid. Because the intensity of the X-ray is directly related to the percentage mass of soil in a suspension, Stokes' law can be used to calculate the grain size distribution of a soil assuming an equivalent particle diameter for the soil grains. X-ray absorption has been found to produce accurate grain size distributions in the 75 μm to 1 μm size range when sample preparation adheres to AASHTO T88-90 specifications and suspension concentrations are approximately 2 percent by volume. Testing for particles sizes down to 1 μm takes approximately 20 min per sample. Technical concerns remaining involve obtaining representative samples of the soil in the 75 μm, to 1 μm size range suspension for testing. One method being evaluated is injection flow analysis, which is an inexpensive method of obtaining representative samples used with a variety of inorganic, industrial, and environmental materials in which direct sampling of fluid is required.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 232
Author(s):  
Pedro J. Sánchez-Soto ◽  
Eduardo Garzón ◽  
Luis Pérez-Villarejo ◽  
George N. Angelopoulos ◽  
Dolores Eliche-Quesada

In this work, an examination of mining wastes of an albite deposit in south Spain was carried out using X-ray Fluorescence (XRF), X-ray diffraction (XRD), particle size analysis, thermo-dilatometry and Differential Thermal Analysis (DTA) and Thermogravimetric (TG) analysis, followed by the determination of the main ceramic properties. The albite content in two selected samples was high (65–40 wt. %), accompanied by quartz (25–40 wt. %) and other minor minerals identified by XRD, mainly kaolinite, in agreement with the high content of silica and alumina determined by XRF. The content of Na2O was in the range 5.44–3.09 wt. %, being associated with albite. The iron content was very low (<0.75 wt. %). The kaolinite content in the waste was estimated from ~8 to 32 wt. %. The particle size analysis indicated values of 11–31 wt. % of particles <63 µm. The ceramic properties of fired samples (1000–1350 °C) showed progressive shrinkage by the thermal effect, with water absorption and open porosity almost at zero at 1200–1250 °C. At 1200 °C, the bulk density reached a maximum value of 2.38 g/cm3. An abrupt change in the phase evolution by XRD was found from 1150 to 1200 °C, with the disappearance of albite by melting in accordance with the predictions of the phase diagram SiO2-Al2O3-Na2O and the system albite-quartz. These fired materials contained as main crystalline phases quartz and mullite. Quartz was present in the raw samples and mullite was formed by decomposition of kaolinite. The observation of mullite forming needle-shape crystals was revealed by Scanning Electron Microscopy (SEM). The formation of fully densified and vitrified mullite materials by firing treatments was demonstrated.


2021 ◽  
Author(s):  
Maame Croffie ◽  
Paul N. Williams ◽  
Owen Fenton ◽  
Anna Fenelon ◽  
Karen Daly

&lt;p&gt;Soil texture is an essential factor for effective land management in agricultural production. Knowledge of soil texture and particle size at field scale can aid with on-going soil management decisions. Standard soil physical and gravimetric methods for particle size analysis are time-consuming and X-ray fluorescence spectrometry (XRF) provides a rapid and cost-effective alternative. The objective of this study was to explore the use of XRF as a predictor for particle size. An extensive archive of Irish soils with particle size and soil texture data was used to select samples for XRF analysis. Regression and correlation analyses on XRF determined results showed that the relationship between Rb and % clay varied with soil type and was dependent on the parent material. There was a strong relationship (R &gt; 0.62, R&lt;sup&gt;2&lt;/sup&gt;&gt;0.30, p&lt;0.05) between Rb and clay for soils originating from bedrock such as limestones and slate. Contrastingly, no significant relationship (R&lt;0.03, R&lt;sup&gt;2&lt;/sup&gt;=0.00, p&gt;0.05) exists between Rb and % clay for soils originating from granite and gneiss. Furthermore, there was a significant negative correlation (p&lt;0.05) between Rb and % sand. The XRF is a useful technique for rough screening of particle size distribution in soils originating from certain parent materials. Thus, this may contribute to the rapid prediction of soil texture based on knowledge of the particle size distribution.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


Author(s):  
Fredy Kurniawan ◽  
Rahmi Rahmi

SnO2 nanoparticles have been synthesized by high voltage electrolysis. Tin bare was used for anode and cathode. The effect of potentials and electrolyte were studied. The particles obtained after electrolysis was characterized using X-ray Diffraction (XRD). The diffractogram is in agreement with the standard diffraction pattern of SnO2 which is identified as tetragonal structure. The Fourier Transform Infrared (FTIR) spectrum indicates that there is a vibration of Sn–O asymmetric at 580 cm-1. The optimum potential for SnO2 nanoparticles synthesis is 60 V at 0.06 M HCl which shows the highest UV-Vis spectrum. The absorption peak of SnO2 nanoparticles by UV-Vis spectrophotometer appears at about 207 nm. The particle size analysis shows that the SnO2 nanoparticles obtained have the size distribution in a range of 25-150 nm with the highest volume at 83.11 nm. Copyright © 2017 BCREC Group. All rights reservedReceived: 15th November 2016; Revised: 26th February 2017; Accepted: 27th February 2017How to Cite: Rahmi, R., Kurniawan, F. (2017). Synthesis of SnO2 Nanoparticles by High Potential Electrolysis. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2): 281-286 (doi:10.9767/bcrec.12.2.773.281-286)Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.773.281-286 


Sign in / Sign up

Export Citation Format

Share Document