CO2 fluid inclusions in ultramafic xenoliths from the Iblean Plateau, Sicily, Italy

1990 ◽  
Vol 54 (375) ◽  
pp. 183-194 ◽  
Author(s):  
B. De Vivo ◽  
A. Lima ◽  
V. Scribano

AbstractThe Iblean Plateau (Southeastern Sicily, Italy) consists of a thick Meso-Cenozoic carbonate sequence with interbedded volcanic horizons (alkaline and tholeiitic basalts). The alkaline basalts contain ultramafic (peridotites and pyroxenites) and mafic xenoliths. The peridotites are spinel-bearing lherzolites and lherzolitic harzburgites, with porphyroblastic to protogranular texture. Pyroxenites consist of Cr-diopside-bearing and Al-augite-bearing websterites. The mineral chemistry of the nodules indicates temperatures between 700 and 1050°C.Fluid inclusions containing CO2 and (sometimes) various proportions of silicate glass have been studied in olivine, orthopyroxene and clinopyroxene. The secondary inclusions occur as trails of CO2-rich inclusions, often cross-cutting deformation lamellae. The few primary inclusions, generally empty, show clear evidence of decrepitation. Of the 390 inclusions examined, 97% homogenized to the liquid phase (Th → L = −43.9 to +30.9°C); 3% homogenized to the vapour phase (Th → V = + 20.5 to +30.3°C, yelding CO2 densities in the range 0.20–1.13 g/cm3. Assuming a trapping temperature of 1100°C, the corresponding trapping pressure for a pure CO2 system lies in the range 0.6–11.0 kbar, i.e. a depth of ∼2.2 to 42 km.The majority of CO2 trapping events in the xenoliths occurred from 2.2 to 11.0 kbar, with no major trapping events at pressures less than 2.3 kbar, indicating the absence of a shallow magma reservoir below the Iblean Plateau.

2021 ◽  
Author(s):  
Barbara Faccini ◽  
Andrea Luca Rizzo ◽  
Federico Casetta ◽  
Luca Faccincani ◽  
Theodoros Ntaflos ◽  
...  

<p>Integrating petrography and mineral chemistry data with the determination of volatiles concentration and isotopic fingerprint in fluid inclusions (FI) in ultramafic xenoliths opens a new window on the study of the Sub-Continental Lithospheric Mantle (SCLM). This frontier approach is crucial for understanding nature, evolution and volatiles recycling within the lithosphere, being particularly important in active or dormant volcanic areas, where the signature of the surface gaseous emissions can be compared to that of the deep mantle domains.</p><p>Five distinct populations of ultramafic xenoliths brought to the surface in West Eifel (~0.5-0.01 Ma) and Siebengebirge (~30-6 Ma) volcanic fields (Germany) were investigated by combining petrographic and mineral chemistry analyses with noble gases + CO<sub>2</sub> determinations in olivine-, orthopyroxene- and clinopyroxene-hosted FI. Xenoliths from West Eifel are modally and compositionally heterogeneous, as testified by the large forsterite range of olivine, the Cr# range of spinel and the variable Al and Ti contents of pyroxene. Siebengebirge rocks, on the other hand, are quite homogeneous, having mostly refractory composition and reflecting high extents (up to 30%) of melt extraction. Equilibration temperatures vary from 900 to 1180 °C in West Eifel and from 880 to 1060°C in Siebengebirge xenoliths, at comparable oxygen fugacity values. In all xenoliths populations, FI composition is dominated by CO<sub>2</sub>, with olivines being the most gas-poor phases and reflecting a residual mantle that experienced one or more melt extraction episodes. The <sup>3</sup>He/<sup>4</sup>He ratio corrected for air contamination (Rc/Ra values) in all phases varies from 6.8 Ra in harzburgites to 5.5 Ra in lherzolites and cumulates rocks, suggesting a progressive modification of an original MORB-like mantle signature via interaction with crustal-related components with <sup>3</sup>He/<sup>4</sup>He and <sup>4</sup>He/<sup>40</sup>Ar* signature similar to magmatic gaseous emissions. The mineral phase major element distribution, together with the systematic variations in FI composition, the positive correlation between Al-enrichment in pyroxene and equilibration temperatures, and the concomitant Rc/Ra decrease at increasing temperature, suggest that the SCLM beneath Siebengebirge represented the German lithosphere prior to the massive infiltration of melts/fluids belonging to the Quaternary Eifel volcanism. On the other hand, West Eifel xenoliths bear witness of multiple heterogeneous metasomatism/refertilization events that took place in the German SCLM between ~6 and ~0.5 Ma. According to Ne and Ar isotope systematics, the FI composition in the studied xenoliths can be explained by mixing between recycled air and a MORB-like mantle, being irreconcilable with the presence of a lower mantle plume beneath the Central European Volcanic Province.</p>


Author(s):  
J. Barriga ◽  
B. Ferna´ndez ◽  
E. Abad ◽  
B. Coto

Despite progresses achieved in the technology of MEMS, the tribological problem continues being an unresolved matter. Wear and stick-slip phenomena are many times the origin of failure of these devices. The application of self-assembled monolayers (SAMs) in liquid phase seems to be a solution to this problems. SAMs of octadecyltrichlorosilane (CH3(CH2)17SiCl3, OTS) were attached to Si(100) oxidized in liquid phase. Contact angle measurements were used for characterizing the grade of hydrophobicity. The topography of the coating was obtained with an Atomic Force Microscopy (AFM) in semicontact mode. The images showed the presence of particles related to the polymerization of the precursor molecule during the formation process of the SAMs. Creating the film of lubricant in vapour phase would avoid this undesirable effect. Tribological tests were carried out with a microtribometer in linear reciprocating movement with a ball of 2 mm of diameter (100Cr6 and Si3N4) and load of some milinewtons. Results were compared with those obtained for silicon oxidized without any coating. The coefficient of friction (COF) and wear (substrate and ball) were studied under different test conditions.


2019 ◽  
Vol 27 (4) ◽  
pp. 755-766
Author(s):  
Majid Hafez Darbani ◽  
◽  
Ali Abedini ◽  
Farhang Aliyari ◽  
AliAsghar Calagari ◽  
...  

Author(s):  
Darlington Njere ◽  
Nwabueze Emekwuru

The evolution of diesel fuel injection technology, to facilitate strong correlations of in-cylinder spray propagation with injection conditions and injector geometry, is crucial in facing emission challenges. More observations of spray propagation are, therefore, required to provide valuable information on how to ensure that all the injected fuel has maximum contact with the available air, to promote complete combustion and reduce emissions. In this study, high pressure diesel fuel sprays are injected into a constant-volume chamber at injection and ambient pressure values typical of current diesel engines. For these types of sprays the maximum fuel liquid phase penetration is different and reached sooner than the maximum fuel vapour phase penetration. Thus, the vapour fuel could reach the combustion chamber wall and could be convected and deflected by swirling air. In hot combustion chambers this impingement can be acceptable but this might be less so in larger combustion chambers with cold walls. The fuel-ambient mixture in vapourized fuel spray jets is essential to the efficient performance of these engines. For this work, the fuel vapour penetration values are presented for fuel injectors of different k-factors. The results indicate that the geometry of fuel injectors based on the k-factors appear to affect the vapour phase penetration more than the liquid phase penetration. This is a consequence of the effects of the injector types on the exit velocity of the fuel droplets.DOI: http://dx.doi.org/10.4995/ILASS2017.2017.4951


2021 ◽  
Author(s):  
Andrea Luca Rizzo ◽  
Barbara Faccini ◽  
Costanza Bonadiman ◽  
Theodoros Ntaflos ◽  
Ioan Seghedi ◽  
...  

<p>The investigation of noble gases (He, Ne, Ar) and CO<sub>2</sub> in fluid inclusions (FI) of mantle-derived rocks from the Sub Continental Lithospheric Mantle (SCLM) is crucial for constraining its geochemical features and evolution as well as the volatiles cycle, and for better evaluating the information arising from the study and monitoring of volcanic and geothermal gases. Eastern Transylvanian Basin in Romania is one of the places in Central-Eastern Europe where mantle xenoliths are brought to the surface by alkaline magmatism, offering the opportunity for applying the above-mentioned approach. Moreover, this locality is one of the few places on Earth where alkaline eruptions occurred contemporaneously with calc-alkaline activity, thus being a promising area for the investigation of subduction influence on the magma sources and volatiles composition.</p><p>In this work, we studied petrography, mineral chemistry and noble gases in FI of mantle xenoliths found in Perşani Mts. alkaline volcanic products. Our findings reveal that the local mantle recorded two main events. The first was a pervasive, complete re-fertilization of a previously depleted mantle by a calc-alkaline subduction-related melt, causing the formation of very fertile, amphibole-bearing lithotypes. Fluids involved in this process and trapped in olivine, opx and cpx, show <sup>4</sup>He/<sup>40</sup>Ar* ratios up to 1.2 and among the most radiogenic <sup>3</sup>He/<sup>4</sup>He values of the European mantle (5.8 ± 0.2 Ra), reflecting the recycling of crustal material in the local lithosphere. The second event is related to a later interaction with an alkaline metasomatic agent similar to the host basalts, that caused slight LREE enrichment in pyroxenes and crystallization of disseminated amphiboles, with FI showing <sup>4</sup>He/<sup>40</sup>Ar* and <sup>3</sup>He/<sup>4</sup>He values up to 2.5 and 6.6 Ra, respectively, more typical of magmatic fluids.</p><p>Although volcanic activity in the Perşani Mts. is now extinct, strong CO<sub>2</sub> degassing (8.7 × 10<sup>3</sup> t/y) in the neighbouring Ciomadul volcanic area may indicate that magma is still present at depth (Kis et al., 2017; Laumonier et al., 2019). The gas manifestations present from Ciomadul area are the closest to the outcrops containing mantle xenoliths for comparison of the noble gas composition in FI. <sup>3</sup>He/<sup>4</sup>He values from Stinky Cave (Puturosul), Doboşeni and Balvanyos are up to 3.2, 4.4 and 4.5 Ra, respectively, indicating the presence of a cooling magma (Vaselli et al., 2002 and references therein). In the same area and more recently, Kis et al. (2019) measured <sup>3</sup>He/<sup>4</sup>He ratios up to 3.1 Ra, arguing that these values indicate a mantle lithosphere strongly contaminated by subduction-related fluids and post-metasomatic ingrowth of radiogenic <sup>4</sup>He. Our findings consider more likely that magmatic gases from Ciomadul volcano are not representative of the local mantle but are being released from a cooling and aging magma that resides within the crust. Alternatively, crustal fluids contaminate magmatic gases while they are rising to the surface.</p><p> </p><p>Kis et al. (2017). Journal of Volcanology and Geothermal Research 341, 119–130.</p><p>Kis et al. (2019) Geochem. Geophys. Geosyst. 20, 3019-3043.</p><p>Laumonier et al. (2019) Earth and Planetary Science Letters, 521, 79-90.</p><p>Vaselli et al. (2002) Chemical Geology 182, 637–654.</p>


1987 ◽  
Vol 51 (362) ◽  
pp. 477-481 ◽  
Author(s):  
R. C. Burruss

AbstractDiagenetic palaeotemperatures determined from aqueous fluid inclusions can be affected by re-equilibration during burial heating. Calculations based on the observed behaviour of inclusions in fluorite under external confining pressure allows prediction of the temperatures and depths of burial necessary to initiate re-equilibration of aqueous inclusions in the common size range 40 to 4 µm. Heating of 20° to 60°C over the initial trapping temperature may cause errors of 10° to 20°C in the homogenization temperature. This suggests re-equilibration may cause aqueous inclusions in carbonates to yield a poor record of their low-temperature history, but a useful record of the maximum temperature experienced by the host rock. Previous work suggests inclusions containing petroleum fluids will be less susceptible to re-equilibration.


Sign in / Sign up

Export Citation Format

Share Document