Thermal expansion in C2/c pyroxenes: a review and new high-temperature structural data for a pyroxene of composition (Na0.53Ca0.47)(Al0.53Fe0.47)Si2O6 (Jd53Hd47)

2014 ◽  
Vol 78 (2) ◽  
pp. 311-324 ◽  
Author(s):  
M. Tribaudino ◽  
L. Mantovani

AbstractSingle-crystal X-ray data collection was performed in situ at T = 300 and 700°C on a sample synthesized along the jadeite–hedenbergite series. The structural data, together with those of a previous investigation of a crystal of the same composition, were compared to those of the endmembers. The evolution of the displacement parameters with temperature shows significant residuals for the O1, O2 and O3 oxygen at T = 0 K, most significantly in the O1, which were interpreted as an indication of positional disorder.Volume thermal expansion and axial deformation ellipsoids were calculated for the above sample together with those of a series of C2/c pyroxenes. Pyroxenes with a divalent M2 cation, Ca, Fe and Mg have a greater expansion than those with a monovalent M2, like Na and Li; the Na pyroxene endmembers with Al, Cr and Fe were observed to show greater expansion than corresponding Li ones.The greater axial expansion is found along the b axis, except in LiCrSi2O6; the changes along the b axis are related to the volume thermal expansion. The axial orientation and anisotropy of the two axes onto the (010) plane is different in Na, Li and Ca-Mg-Fe pyroxenes, but the overall expansion onto the (010) plane, given by the sum of the scalar expansion along the two axes on (010), is very similar in pyroxenes.The deformation along the b axis with temperature and composition is driven by the deformation along b of the octahedral M1 chain; most important is the contribution from the O1−O1 shared edge between M1 octahedra in the same octahedral chain.

2018 ◽  
Vol 212 ◽  
pp. 161-166 ◽  
Author(s):  
Adam C. Lindsey ◽  
Matthew Loyd ◽  
Maulik K. Patel ◽  
Ryan Rawl ◽  
Haidong Zhou ◽  
...  

2015 ◽  
Vol 79 (1) ◽  
pp. 157-170 ◽  
Author(s):  
Paolo Ballirano

AbstractThe present work analyses the thermal behaviour of alum-(K), KAl(SO4)2·12H2O, by in situ laboratory high-temperature powder X-ray diffraction data from 303 K to melting, which starts at 355 K and is completed, due to kinetics, at 359 K. The calculated a0 linear thermal expansion coefficient is of 14.68(11) × 10–6 K–1 within the investigated thermal range. The k disorder parameter, describing the extension of the orientational disorder of the sulfate group, has been found to decrease from ∼0.70 to ∼0.65 just before melting. It has been demonstrated that the occurrence of the disorder implies the coexistence of K+ ions in both six- and seven-fold coordination. This is necessary for assigning a reasonable bond-valence sum of 0.81 valence units (vu) to the 'average' K+ ion a instead of 0.66 vu, which is obtained in the case of six-fold coordination alone. We can describe the temperature dependence of k from 93–355 K by means of the empirical equation k = 0.798(12) + 2.5(11) × 10–4 T – 1.9(2) × 10–6T2, which includes reference low-temperature data. Bond-valence analysis has shown that, on cooling, an increase of the k disorder parameter and shortening of the K–O2 bond distance act together to maintain constancy in the bond-valence sum at the K site, stabilizing the structure. Therefore, the need for keeping the 'average' K+ ion at a reasonable bond-valence sum appears to be the driving force for the ordering process involving the sulfate group.


2016 ◽  
Vol 18 (6) ◽  
pp. 4617-4626 ◽  
Author(s):  
S. I. Sadovnikov ◽  
A. I. Gusev ◽  
A. V. Chukin ◽  
A. A. Rempel

An in situ study of thermal expansion of polymorphic phases of coarse-crystalline and nanocrystalline silver sulfide – monoclinic acanthite α-Ag2S and cubic argentite β-Ag2S – has been carried out for the first time using the high-temperature X-ray diffraction method.


2010 ◽  
Vol 504 ◽  
pp. S155-S158 ◽  
Author(s):  
J. Bednarcik ◽  
C. Curfs ◽  
M. Sikorski ◽  
H. Franz ◽  
J.Z. Jiang

2006 ◽  
Vol 70 (6) ◽  
pp. 467-472 ◽  
Author(s):  
Tomonori Nambu ◽  
Nobue Shimizu ◽  
Hisakazu Ezaki ◽  
Hiroshi Yukawa ◽  
Masahiko Morinaga ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document