scholarly journals Gaucher disease and other storage disorders

Hematology ◽  
2012 ◽  
Vol 2012 (1) ◽  
pp. 13-18 ◽  
Author(s):  
Gregory A. Grabowski

Abstract In 1882, Philippe Gaucher described a 32-year-old woman with massive splenomegaly and unusually large cells in the spleen, which he called a “primary epithelioma of the spleen.” The systemic nature and inheritance of the disease and its variants involving the viscera and CNS were described over the next century. The delineation of the causal enzymatic defects, genetics, molecular pathology, and genomics have provided pathogenic insights into the phenotypic spectrum and the bases for development of specific therapies for what is now known as Gaucher disease. As a prototype, the clinically and economically successful intracellular enzyme therapy provided the impetus for the expansion of similar research and therapeutic developments for other lysosomal storage diseases (LSDs) and orphan diseases, including Fabry, Pompe, and Niemann-Pick diseases, as well as several mucopolysaccharidoses. Continuing studies of such LSDs, which occur as a group in more than 7000 live births, have revealed the complex molecular interdigitation with the autophagy and apoptotic pathways and proteostasis and the impact of disruptions of the lysosomal/autophagy and proteostasis systems on more common diseases has been recognized. Examples include age-related neurodegenerative diseases (eg, Parkinson disease and Gaucher disease), idiopathic hypertrophic myocardiopathies, stroke and renal failure (eg, Fabry disease), and Nonalcoholic Fatty Liver Disease/Nonalcoholic SteatoHepatitis (NAFLD/NASH) and atherosclerosis (eg, lysosomal acid lipase deficiencies). Although perceived as rare, the availability of treatment and the impact of the LSDs on more common diseases require their integration into routine clinical practice.

2017 ◽  
Vol 51 (3) ◽  
Author(s):  
Mary Ann R. Abacan ◽  
Mary Anne D. Chiong

Gaucher disease is the most common of the lysosomal storage diseases caused by a defect in the lysosomal enzyme βglucocererbrosidase resulting in multi-organ involvement. The presence of cholelithiasis has been rarely observed among patients with non-neuronopathic type of Gaucher disease and the exact pathophysiology is still unknown. We report a Filipino child with chronic neuronopathic Gaucher Disease noted to have cholelithiasis on routine whole abdominal ultrasonography as part of the regular monitoring of the disease.


2015 ◽  
Vol 396 (6-7) ◽  
pp. 659-667 ◽  
Author(s):  
Einat B. Vitner ◽  
Anthony H. Futerman ◽  
Nick Platt

Abstract Lysosomal storage diseases (LSDs) are mainly caused by the defective activity of lysosomal hydrolases. A sub-class of LSDs are the sphingolipidoses, in which sphingolipids accumulate intra-cellularly. We here discuss the role of innate immunity in the sphingolipidoses, and compare the pathways of activation in two classical sphingolipidoses, namely Gaucher disease and Sandhoff disease, and in Niemann-Pick C disease, in which the main storage material is cholesterol but sphingolipids also accumulate. We discuss the mechanisms leading to neuroinflammation, and the different pathways of neuroinflammation in the different diseases, and suggest that intervention in these pathways may be a useful therapeutic approach to address these devastating human diseases.


Author(s):  
Fernanda Cabrera-Reyes ◽  
Claudia Parra-Ruiz ◽  
María Isabel Yuseff ◽  
Silvana Zanlungo

Lipid-related disorders, which primarily affect metabolic tissues, including adipose tissue and the liver are associated with alterations in lysosome homeostasis. Obesity is one of the more prevalent diseases, which results in energy imbalance within metabolic tissues and lysosome dysfunction. Less frequent diseases include Niemann-Pick type C (NPC) and Gaucher diseases, both of which are known as Lysosomal Storage Diseases (LSDs), where lysosomal dysfunction within metabolic tissues remains to be fully characterized. Adipocytes and hepatocytes share common pathways involved in the lysosome-autophagic axis, which are regulated by the function of cathepsins and CD36, an immuno-metabolic receptor and display alterations in lipid diseases, and thereby impacting metabolic functions. In addition to intrinsic defects observed in metabolic tissues, cells of the immune system, such as B cells can infiltrate adipose and liver tissues, during metabolic imbalance favoring inflammation. Moreover, B cells rely on lysosomes to promote the processing and presentation of extracellular antigens and thus could also present lysosome dysfunction, consequently affecting such functions. On the other hand, growing evidence suggests that cells accumulating lipids display defective inter-organelle membrane contact sites (MCSs) established by lysosomes and other compartments, which contribute to metabolic dysfunctions at the cellular level. Overall, in this review we will discuss recent findings addressing common mechanisms that are involved in lysosome dysregulation in adipocytes and hepatocytes during obesity, NPC, and Gaucher diseases. We will discuss whether these mechanisms may modulate the function of B cells and how inter-organelle contacts, emerging as relevant cellular mechanisms in the control of lipid homeostasis, have an impact on these diseases.


2019 ◽  
Vol 64 (3) ◽  
pp. 331-341 ◽  
Author(s):  
R. V. Ponomarev ◽  
K. A. Lukina ◽  
E. P. Sysoeva ◽  
R. B. Chavynchak ◽  
A. A. Solovyeva ◽  
...  

Introduction. Gaucher disease (GD) belongs to the group of lysosomal storage diseases. Enzyme replacement therapy (ERT) is considered to be the current standard in GD treatment. No reduced ERT regimen has thus far been developed. Aim. To develop an optimal reduced ERT regimen for adult patients with type I GD, which is scientifically and economically viable.Materials and methods. The study included 100 adult patients with type I GD who achieved treatment goals following at least two years of the standard ERT regimen. Patients were prescribed a reduced ERT regimen, which consisted in increasing the interval between the infusions of the recombinant enzyme up to 4 weeks, at a dose of 15–20 units/kg of body weight. The efficacy of the reduced ERT regimen was assessed once every 12 months according to main GD parameters. The follow-up period in the study ranged from 12 to 36 months.Results. The patients with type I GD who achieved treatment goals following the standard ERT regimen and were then prescribed a reduced ERT regimen retained a stable therapeutic effect of the initial treatment according to all parameters: no clinically significant differences found in haemoglobin and platelet levels, spleen size and specific infiltration of femur bone marrow.Conclusion. An increase in the intervals between infusions of the recombinant glucocerebrosidase up to 4 weeks for 12, 24 and 36 months did not lead to worsening of the laboratory and instrumental parameters associated with GD. 


2022 ◽  
pp. 197-208
Author(s):  
Naima Fdil ◽  
Es-Said Sabir ◽  
Karima Lafhal ◽  
Noureddine Rada ◽  
Redouane El Fezzazi ◽  
...  

People with respiratory problems and people prone to decompensations are particularly vulnerable to COVID-19. These characteristics are often present in patients with inherited metabolic diseases (IMDs). It is therefore conceivable that patients with IMDs are at a greater risk of infection and may present a more serious form of COVID-19 disease. Currently available data about the impact of COVID-19 on patients suffering from IMDs are very scarce and no study has been able to confirm this hypothesis. In this chapter, the authors have tried to show that the severity of COVID-19 infection in patients with IMDs is specific to the group that the disease belongs. Indeed, lysosomal storage diseases caused by impaired degradation and accumulation of metabolites in lysosomes leads to dysfunction of lysosomal and possible impairment of the COVID-19 egress process. The fact that COVID-19 disease may be considered itself as an IMD was also discussed to highlight the interference which can exist between COVID-19 disease and IMDs in a patient.


2005 ◽  
Vol 94 (0) ◽  
pp. 43-46 ◽  
Author(s):  
J Aerts ◽  
C Hollak ◽  
M van Breemen ◽  
M Maas ◽  
J Groener ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document