Tolerance induction by lentiviral gene therapy with a nonmyeloablative regimen

Blood ◽  
2006 ◽  
Vol 107 (6) ◽  
pp. 2286-2293 ◽  
Author(s):  
Noboru Mitsuhashi ◽  
Jacqueline Fischer-Lougheed ◽  
Irina Shulkin ◽  
Annette Kleihauer ◽  
Donald B. Kohn ◽  
...  

AbstractAntibodies (Abs) directed at the Galα1,3Galβ1,4GlcNAc-R (αGal) carbohydrate epitope initiate xenograft rejection. Previously, we have shown that bone marrow transplantation (BMT) with lentivirus-mediated gene transfer of porcine α1,3 galactosyltransferase (GalT) is able to induce tolerance to αGal-expressing heart grafts following a lethal dose of irradiation. Here we show the first demonstration of permanent survival of αGal+ hearts following transplantation with autologous, lentivirus-transduced BM using a nonmyeloablative regimen. Autologous BM from GalT knockout (GalT–/–) mice was transduced with a lentiviral vector expressing porcine GalT and transplanted into sublethally irradiated (3 Gy) GalT–/– mice. Chimerism in the peripheral blood cells (PBCs) remained low but was higher in the BM, especially within the stromal cell population. Mice reconstituted with GalT did not produce anti-αGal Abs over time. We immunized these mice with αGal-expressing cells and assessed humoral immune responses. Anti-αGal xenoantibodies were not produced in mice reconstituted with GalT, but normal Ab responses to other xenoantigens were detected. Mice reconstituted with GalT accepted αGal+ heart grafts over 100 days. Transduction with lentiviral vectors results in chimerism at levels sufficient to induce long-term tolerance under nonmyeloablative conditions.

2019 ◽  
Author(s):  
Ria Goswami ◽  
Ashley N. Nelson ◽  
Joshua J. Tu ◽  
Maria Dennis ◽  
Liqi Feng ◽  
...  

ABSTRACTTo achieve long-term viral remission in HIV-infected children, novel strategies beyond early anti-retroviral therapy (ART) will be necessary. Identifying clinical predictors of time to viral rebound upon ART interruption will streamline the development of novel therapeutic strategies and accelerate their evaluation in clinical trials. However, identification of these biomarkers is logistically challenging in infants, due to sampling limitations and potential risks of treatment interruption. To facilitate identification of biomarkers predicting viral rebound, we have developed an infant rhesus macaque (RM) model of oral SHIV.CH505.375H.dCT challenge and analytical treatment interruption (ATI) after short-term ART. We used this model to characterize SHIV replication kinetics and virus-specific immune responses during short-term ART or post-ATI and demonstrated plasma viral rebound in 5 out of 6 (83%) infants. We observed a decline in humoral immune responses and partial dampening of systemic immune activation upon initiation of ART in these infants. Furthermore, we documented that infant and adult macaques have similar SHIV replication and rebound kinetics and equally potent virus-specific humoral immune responses. Finally, we validated our models by confirming a well-established correlate of time to viral rebound, namely pre-ART plasma viral load, as well as identified additional potential humoral immune correlates. Thus, this model of infant ART and viral rebound can be used and further optimized to define biomarkers of viral rebound following long-term ART as well as to pre-clinically assess novel therapies to achieve a pediatric HIV functional cure.IMPORTANCENovel interventions that do not rely on daily adherence to ART are needed to achieve sustained viral remission for perinatally infected children who currently rely on lifelong ART. Considering the risks and expense associated with ART-interruption trials, identification of biomarkers of viral rebound will prioritize promising therapeutic intervention strategies, including anti-HIV Env protein therapeutics. However, comprehensive studies to identify those biomarkers are logistically challenging in human infants, demanding the need for relevant non-human primate models of HIV rebound. In this study, we developed an infant RM model of oral Simian/Human Immunodeficiency virus infection expressing clade C HIV Env, and short-term ART followed by ATI, longitudinally characterizing immune responses to viral infection during ART and post-ATI. Additionally, we compared this infant RM model to an analogous adult RM rebound model and identified virologic and immunologic correlates of time to viral rebound post-ATI.


2007 ◽  
Vol 81 (1) ◽  
pp. 79-89 ◽  
Author(s):  
Debabrata Ghosh ◽  
Soma Datta ◽  
Shelley Bhattacharya ◽  
Shibnath Mazumder

2005 ◽  
Vol 51 (12) ◽  
pp. 1015-1020 ◽  
Author(s):  
Marco A Medeiros ◽  
Geraldo R.G Armôa ◽  
Odir A Dellagostin ◽  
Douglas McIntosh

Two recombinant Mycobacterium bovis BCG (rBCG) vaccine strains were developed for the expression of cytoplasmically located S1 subunit of pertussis toxin, with expression driven by the hsp60 promoter of M. bovis (rBCG/pPB10) or the pAN promoter of Mycobacterium paratuberculosis (rBCG/pPB12). Both strains showed stable expression of equivalent levels of recombinant S1 in vitro and induced long-term (up to 8 months) humoral immune responses in BALB/c mice, although these responses differed quantitatively and qualitatively. Specifically, rBCG/pPB12 induced markedly higher levels of IgG1 than did rBCG/pPB10, and mice immunized with the former strain developed specific long-term memory to S1, as indicated by the production of high levels of S1-specific IgG in response to a sublethal challenge with pertussis toxin 15 months after initial immunization. When considered in combination with previous studies, our data encourage further evaluation of rBCG as a potential means of developing a low-cost whooping cough vaccine based on defined antigens.Key words: recombinant BCG, humoral immune response, B. pertussis.


mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Ria Goswami ◽  
Ashley N. Nelson ◽  
Joshua J. Tu ◽  
Maria Dennis ◽  
Liqi Feng ◽  
...  

ABSTRACT To achieve long-term viral remission in human immunodeficiency virus (HIV)-infected children, novel strategies beyond early antiretroviral therapy (ART) will be necessary. Identifying clinical predictors of the time to viral rebound upon ART interruption will streamline the development of novel therapeutic strategies and accelerate their evaluation in clinical trials. However, identification of these biomarkers is logistically challenging in infants, due to sampling limitations and the potential risks of treatment interruption. To facilitate the identification of biomarkers predicting viral rebound, we have developed an infant rhesus macaque (RM) model of oral simian-human immunodeficiency virus (SHIV) SHIV.CH505.375H.dCT challenge and analytical treatment interruption (ATI) after short-term ART. We used this model to characterize SHIV replication kinetics and virus-specific immune responses during short-term ART or after ATI and demonstrated plasma viral rebound in 5 out of 6 (83%) infants. We observed a decline in humoral immune responses and partial dampening of systemic immune activation upon initiation of ART in these infants. Furthermore, we monitored SHIV replication and rebound kinetics in infant and adult RMs and found that both infants and adults demonstrated equally potent virus-specific humoral immune responses. Finally, we validated our models by confirming a well-established correlate of the time to viral rebound, namely, the pre-ART plasma viral load, as well as identified additional potential humoral immune correlates. Thus, this model of infant ART and viral rebound can be used and further optimized to define biomarkers of viral rebound following long-term ART as well as to preclinically assess novel therapies to achieve a pediatric HIV functional cure. IMPORTANCE Novel interventions that do not rely on daily adherence to ART are needed to achieve sustained viral remission for perinatally infected children, who currently rely on lifelong ART. Considering the risks and expense associated with ART interruption trials, the identification of biomarkers of viral rebound will prioritize promising therapeutic intervention strategies, including anti-HIV Env protein therapeutics. However, comprehensive studies to identify those biomarkers are logistically challenging in human infants, demanding the need for relevant nonhuman primate models of HIV rebound. In this study, we developed an infant RM model of oral infection with simian-human immunodeficiency virus expressing clade C HIV Env and short-term ART followed by ATI, longitudinally characterizing the immune responses to viral infection during ART and after ATI. Additionally, we compared this infant RM model to an analogous adult RM rebound model and identified virologic and immunologic correlates of the time to viral rebound after ATI.


2015 ◽  
Vol 1 (6) ◽  
pp. e1500112 ◽  
Author(s):  
Kristen M. Lorentz ◽  
Stephan Kontos ◽  
Giacomo Diaceri ◽  
Hugues Henry ◽  
Jeffrey A. Hubbell

Antigen-specific immune responses to protein drugs can hinder efficacy and compromise safety because of drug neutralization and secondary clinical complications. We report a tolerance induction strategy to prevent antigen-specific humoral immune responses to therapeutic proteins. Our modular, biomolecular approach involves engineering tolerizing variants of proteins such that they bind erythrocytes in vivo upon injection, on the basis of the premise that aged erythrocytes and the payloads they carry are cleared tolerogenically, driving the deletion of antigen-specific T cells. We demonstrate that binding the clinical therapeutic enzyme Escherichia colil-asparaginase to erythrocytes in situ antigen-specifically abrogates development of antibody titers by >1000-fold and extends the pharmacodynamic effect of the drug 10-fold in mice. Additionally, a single pretreatment dose of erythrocyte-binding asparaginase tolerized mice to multiple subsequent doses of the wild-type enzyme. This strategy for reducing antigen-specific humoral responses may enable more effective and safer treatment with therapeutic proteins and drug candidates that are hampered by immunogenicity.


Vaccine ◽  
2016 ◽  
Vol 34 (27) ◽  
pp. 3082-3086 ◽  
Author(s):  
Hugo Fernández-Bellon ◽  
Júlia Vergara-Alert ◽  
Vanessa Almagro ◽  
Raquel Rivas ◽  
Azucena Sánchez ◽  
...  

1987 ◽  
Vol 165 (3) ◽  
pp. 799-811 ◽  
Author(s):  
R F Breiman ◽  
M A Horwitz

We have employed the guinea pig model of L. pneumophila infection, which mimics Legionnaires' disease in humans both clinically and pathologically, to study humoral and cell-mediated immune responses to L. pneumophila and to examine protective immunity after aerosol exposure, the natural route of infection. Guinea pigs exposed to sublethal concentrations of L. pneumophila by aerosol developed strong humoral immune responses. By the indirect fluorescent antibody assay, exposed guinea pigs had a median serum antibody titer (expressed as the reciprocal of the highest positive dilution) of 32, whereas control guinea pigs had a median titer of less than 1. Sublethally infected (immunized) guinea pigs also developed strong cell-mediated immune responses. In response to L. pneumophila antigens, splenic lymphocytes from immunized but not control animals proliferated strongly in vitro, as measured by their capacity to incorporate [3H]thymidine. Moreover, immunized but not control guinea pigs developed strong cutaneous delayed-type hypersensitivity to intradermally injected L. pneumophila antigens. Sublethally infected (immunized) guinea pigs exhibited strong protective immunity to L. pneumophila. In two independent experiments, all 22 immunized guinea pigs survived aerosol challenge with one or three times the lethal dose of L. pneumophila whereas none of 16 sham-immunized control guinea pigs survived (p less than 0.0001 in each experiment). Immunized guinea pigs were not protected significantly from challenge with 10 times the lethal dose. Immunized but not control animals cleared the bacteria from their lungs. This study demonstrates that guinea pigs sublethally infected with L. pneumophila by the aerosol route develop strong humoral immune responses to this pathogen, develop strong cell-mediated immune responses and cutaneous delayed-type hypersensitivity to L. pneumophila antigens, are protected against subsequent lethal aerosol challenge, and are able to clear the bacteria from their lungs. The guinea pig model of L. pneumophila pulmonary infection is as an excellent one for studying general principles of host defense against pulmonary infections caused by intracellular pathogens.


Sign in / Sign up

Export Citation Format

Share Document