scholarly journals Notch-dependent T-lineage commitment occurs at extrathymic sites following bone marrow transplantation

Blood ◽  
2006 ◽  
Vol 107 (9) ◽  
pp. 3511-3519 ◽  
Author(s):  
Ivan Maillard ◽  
Benjamin A. Schwarz ◽  
Arivazhagan Sambandam ◽  
Terry Fang ◽  
Olga Shestova ◽  
...  

Early T-lineage progenitors (ETPs) arise after colonization of the thymus by multipotent bone marrow progenitors. ETPs likely serve as physiologic progenitors of T-cell development in adult mice, although alternative T-cell differentiation pathways may exist. While we were investigating mechanisms of T-cell reconstitution after bone marrow transplantation (BMT), we found that efficient donor-derived thymopoiesis occurred before the pool of ETPs had been replenished. Simultaneously, T lineage–restricted progenitors were generated at extrathymic sites, both in the spleen and in peripheral lymph nodes, but not in the bone marrow or liver. The generation of these T lineage–committed cells occurred through a Notch-dependent differentiation process. Multipotent bone marrow progenitors efficiently gave rise to extrathymic T lineage–committed cells, whereas common lymphoid progenitors did not. Our data show plasticity of T-lineage commitment sites in the post-BMT environment and indicate that Notch-driven extrathymic Tlineage commitment from multipotent progenitors may contribute to early T-lineage reconstitution after BMT.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1190-1190
Author(s):  
Ivan Maillard ◽  
Arivazhagan Sambandan ◽  
Valerie P. Zediak ◽  
Benjamin Schwarz ◽  
Lanwei Xu ◽  
...  

Abstract The essential role of Notch for T lineage commitment is well established, but it remains unclear where and on which progenitor subset(s) Notch signals act. Addressing these questions is critical to understand the regulation of lymphopoiesis in normal and lymphopenic settings, such as after bone marrow transplantation (BMT). In normal mice, a small number of progenitors settle in the thymus from the blood and expand to generate a pool of early T lineage progenitors (ETPs). At the population level, ETPs can give rise to T cells, NK cells, B cells, DCs and myeloid cells. We found that ETPs could be subdivided based on expression of the cytokine receptor Flt3, which is expressed on about 10% of ETPs and is inversely correlated with expression of Notch target genes. B lineage potential was restricted to ETPFlt3 positive cells. The Notch targets Hes-1, Hes-5, and Deltex1 were present at low levels in ETPFlt3 positive and high levels in ETPFlt3 negative cells. Induction of Notch signaling resulted in the rapid downregulation of surface Flt3 expression. In contrast, culture of ETPFlt3 negative cells in the absence of Notch ligands resulted in upregulation of Flt3. Although both ETP subsets were efficient T lineage progenitors, ETPFlt3 negative cells had a more rapid differentiation kinetics resembling DN2 thymocytes, consistent with a more advanced state of T lineage commitment relative to the Flt3 positive subset. In mice reconstituted with HSCs transduced with the pan-Notch inhibitor DNMAML1 (Maillard et al., Blood 2004), no ETPFlt3 negative and very few ETPFlt3 positive cells were observed, indicating that the generation of ETPs is Notch-dependent. These observations position the physiological Notch checkpoint either very early after thymic seeding and/or in a prethymic location.To further investigate if Notch-dependent prethymic T lineage commitment occurs in adult mice, we studied lymphoid reconstitution early after BMT. ETPs were absent in the thymus of recipients until ≥ 6 weeks post-BMT, despite the presence of donor-derived pre-T cells and double positive thymocytes as early as 2–3 weeks post-BMT. Instead, cells with pre-T cell characteristics were present in the spleen of BMT recipients in the first month post-BMT. These cells were absent when DNMAML1-transduced bone marrow was used as the source of HSCs, indicating that generation of extrathymic pre-T cells is Notch-dependent. Thus, extrathymic sites may be important for efficient lymphoid reconstitution after BMT. Altogether, our results indicate that both intrathymic and extrathymic Notch-dependent checkpoints regulate T lineage commitment during normal development and in the post-BMT setting.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2003-2003
Author(s):  
Christen L Ebens ◽  
Jooho Chung ◽  
Ute Koch ◽  
Ivy T Tran ◽  
Ashley R Sandy-Sloat ◽  
...  

Abstract Allogeneic bone marrow transplantation (allo-BMT) is limited by graft-versus-host disease (GVHD). We previously reported an essential role for Notch signaling in alloreactive T cells mediating GVHD after allo-BMT, demonstrating a profound decrease in GVHD incidence and severity with genetic Notch inhibition in donor T cells or systemic antibody-mediated blockade of Delta-like1 (Dll1) and Delta-like4 (Dll4) Notch ligands (Zhang et al., Blood 117(1), 2011; Sandy et al., J Immunol 190(11), 2013; Tran et al., JCI123(4), 2013). However, the cellular source of these critical Notch ligands remains unknown. While host hematopoietic antigen-presenting cells (APCs) seem a likely source, recent evidence indicates that these cells are not solely responsible for donor T cell activation in GVHD. We considered three alternative sources of Notch ligands: donor-derived hematopoietic cells, host hematopoietic APCs surviving lethal irradiation, and host non-hematopoietic radioresistant cells. To test these possibilities, we used complementary genetic and biochemical approaches to inactivate Dll1/Dll4 in specific compartments, or to provide ubiquitous systemic blockade of these ligands. Bone marrow (BM) chimeras were created by transplanting BM from poly(I:C)-induced Mx-Cre+ x Dll1f/fDll4f/f B6-CD45.2 mice into lethally irradiated B6-CD45.1 mice, generating chimeric mice without Dll1 and Dll4 only in the host hematopoietic compartment. After 14 weeks of reconstitution, CD45.2 → CD45.1 turnover was near complete in hematopoietic progenitors and professional APCs. Dll1/Dll4 excision was >99% by qPCR. WT (wild-type) BM chimeras subjected to MHC-mismatched allo-BMT (BALB/c → [Mx-Cre- x Dll1f/fDll4f/f (B6-CD45.2) → B6-SJL CD45.1]) had evidence of severe aGVHD and poor survival, as expected. Interestingly, BM chimera mice lacking Dll1 and Dll4 expression in the host hematopoietic compartment had equally severe GVHD and impaired survival following allo-BMT (BALB/c → [Mx-Cre+ x Dll1f/fDll4f/f (B6-CD45.2) → B6-SJL CD45.1]). In contrast, both WT and Dll1/Dll4-deficient BM chimeras treated with anti-Dll1/Dll4 antibodies (i.p. x4 over days 0-10 of transplant) had markedly decreased GVHD and improved survival (log rank Χ2=30.6, p<0.0001). Anti-Dll1/Dll4 antibodies blocked cytokine production by alloreactive T cells even after transplantation of purified T cells into irradiated recipients, ruling out dominant presentation of Notch ligands by donor-derived professional APCs. We are now backcrossing our Mx-Cre+ x Dll1f/fDll4f/f mice onto a BALB/c background to allow for simultaneous elimination of both donor and host hematopoietic Dll1 and Dll4 expression during allo-BMT. In addition to Notch-dependent regulation of GVHD, we studied immature pre-T cells that arise at extrathymic sites after BMT. We and others have observed Notch-dependent T cell development in lymphoid organs during early T cell reconstitution after transplantation (Lancrin et al., J Exp Med 195(7), 2002; Maillard et al., Blood 107(9), 2006; Holland et al., JCI122(12), 2013). Thus, this phenomenon is an alternative readout for exposure to Notch ligands in the post-BMT environment. Systemic blockade of Dll1 but not Dll4 with neutralizing antibodies completely blocked the development of these cells, indicating strict Dll1-dependence. In contrast, Dll1 elimination in host, donor or both host/donor hematopoietic compartments did not abrogate extrathymic pre-T cell development, consistent with a source of Notch ligands in host radioresistant cells. Altogether, these findings suggest that Notch ligands expressed by radio-resistant non-hematopoietic host tissues have important immunobiological functions during GVHD and T cell reconstitution. Identifying the cellular source of Delta-like ligands is critical to understand the effects of Notch signaling after bone marrow transplantation. Disclosures: Yan: Genentech, Inc: Employment. Siebel:Genentech, Inc: Employment.


Blood ◽  
1992 ◽  
Vol 80 (11) ◽  
pp. 2938-2942 ◽  
Author(s):  
BG Gordon ◽  
PI Warkentin ◽  
DD Weisenburger ◽  
JM Vose ◽  
WG Sanger ◽  
...  

Abstract We report nine children with relapsed (n = 8) or high-risk (n = 1) peripheral T-cell lymphoma (PTCL) who underwent autologous (n = 6) or allogeneic (n = 3) bone marrow transplantation (BMT). These children received transplants as part of a prospective phase I/II study of thioTEPA (TT) and total body irradiation (TBI) with escalating doses of VP-16. The median age of these patients at time of BMT was 6.5 years (range 2.5 years to 14 years). Three were transplanted with active disease after failing salvage chemotherapy. Of the other six, one was transplanted in first complete remission (CR) and five in second or subsequent CR. Of these nine patients, eight are free of disease a median of 25 months after BMT (range, 6 to 48 months), with an estimated 2-year relapse-free survival (RFS) of 89%. Six of these eight patients have been followed for 12 or more months after BMT, and in each their current remission exceeds their longest previous remission duration. The toxicity of the TT/TBI +/- VP-16 regimens was significant but manageable, predominantly consisting of severe mucositis. For a comparison, we reviewed retrospective data on the six additional children and adolescents with PTCL who underwent BMT during the 3-year period preceding this phase I/II study. The median age at BMT of these six patients was 19 years (range 15.5 years to 20 years). These patients were prepared for BMT with a variety of other regimens. One had no response to BMT and the other five relapsed at 1.5 to 5 months after BMT (median, 3 months) with an RFS of 0%. Our data suggest that thioTEPA plus TBI, with or without VP-16, is an effective preparative regimen for BMT for young patients with relapsed or high-stage PTCL and leads to prolonged RFS.


Blood ◽  
2008 ◽  
Vol 112 (6) ◽  
pp. 2232-2241 ◽  
Author(s):  
Jeff K. Davies ◽  
John G. Gribben ◽  
Lisa L. Brennan ◽  
Dongin Yuk ◽  
Lee M. Nadler ◽  
...  

AbstractWe report the outcomes of 24 patients with high-risk hematologic malignancies or bone marrow failure (BMF) who received haploidentical bone marrow transplantation (BMT) after ex vivo induction of alloantigen-specific anergy in donor T cells by allostimulation in the presence of costimulatory blockade. Ninety-five percent of evaluable patients engrafted and achieved full donor chimerism. Despite receiving a median T-cell dose of 29 ×106/kg, only 5 of 21 evaluable patients developed grade C (n = 4) or D (n = 1) acute graft-versus-host disease (GVHD), with only one attributable death. Twelve patients died from treatment-related mortality (TRM). Patients reconstituted T-cell subsets and immunoglobulin levels rapidly with evidence of in vivo expansion of pathogen-specific T cells in the early posttransplantation period. Five patients reactivated cytomegalovirus (CMV), only one of whom required extended antiviral treatment. No deaths were attributable to CMV or other viral infections. Only 1 of 12 evaluable patients developed chronic GVHD. Eight patients survive disease-free with normal performance scores (median follow-up, 7 years). Thus, despite significant early TRM, ex vivo alloanergization can support administration of large numbers of haploidentical donor T cells, resulting in rapid immune reconstitution with very few viral infections. Surviving patients have excellent performance status and a low rate of chronic GVHD.


Sign in / Sign up

Export Citation Format

Share Document