TC-PTP–deficient bone marrow stromal cells fail to support normal B lymphopoiesis due to abnormal secretion of interferon-γ

Blood ◽  
2007 ◽  
Vol 109 (10) ◽  
pp. 4220-4228 ◽  
Author(s):  
Annie Bourdeau ◽  
Nadia Dubé ◽  
Krista M. Heinonen ◽  
Jean-François Théberge ◽  
Karen M. Doody ◽  
...  

Abstract The T-cell protein tyrosine phosphatase (TC-PTP) is a negative regulator of the Jak/Stat cytokine signaling pathway. Our study shows that the absence of TC-PTP leads to an early bone marrow B-cell deficiency characterized by hindered transition from the pre-B cell to immature B-cell stage. This phenotype is intrinsic to the B cells but most importantly due to bone marrow stroma abnormalities. We found that bone marrow stromal cells from TC-PTP−/− mice have the unique property of secreting 232-890 pg/mL IFN-γ. These high levels of IFN-γ result in 2-fold reduction in mitotic index on IL-7 stimulation of TC-PTP−/− pre-B cells and lower responsiveness of IL-7 receptor downstream Jak/Stat signaling molecules. Moreover, we noted constitutive phosphorylation of Stat1 in those pre-B cells and demonstrated that this was due to soluble IFN-γ secreted by TC-PTP−/− bone marrow stromal cells. Interestingly, culturing murine early pre-B leukemic cells within a TC-PTP–deficient bone marrow stroma environment leads to a 40% increase in apoptosis in these malignant cells. Our results unraveled a new role for TC-PTP in normal B lymphopoiesis and suggest that modulation of bone marrow microenvironment is a potential therapeutic approach for selected B-cell leukemia.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 337-337
Author(s):  
Wei Ding ◽  
Grzegorz S. Nowakowski ◽  
Jennifer L. Abrahamzon ◽  
Linda E. Wellik ◽  
Asish K. Ghosh ◽  
...  

Abstract It is believed that malignant cells “condition” the microenvironment to facilitate tumor cell survival. We hypothesized that crosstalk between CLL B-cells and marrow stromal cells impacts both cell types bi-directionally and ultimately contributes to leukemic cell apoptotic resistance. To test this hypotheses, bone marrow stromal cells from core bone biopsies from CLL patients were isolated and cultured using methods we have previously described (Leuk Res 2007 31(7):899). Subsequently, we determined the impact of co-culture on CLL B-cell features including apoptosis and CD38 expression. In addition, we evaluated the release of angiogenic cytokines on co-culture and signal events in the stromal cells. Immunophenotyping demonstrated that cultured bone biopsy derived stromal cells were CD73+, CD105+, CD146+, CD14−, CD45−, CD34−, HLA-DR-, suggesting they were mesenchymal stem cells (MSC). Co-culture of these MSC with CLL B-cells protected CLL B-cells from both spontaneous apoptosis (SA) and drug-induced (fludarabine and chlorambucil) apoptosis (DA). For SA, the mean survival of CLL B-cells with or without co-culture of MSC for 5 days were 56.9 ± 10.0 and 7.7 ±3.7 (p<0.05), respectively. When CLL B cells were treated with fludarabine or chlorambucil, the fraction of CLL cells tightly adherent to MSC (TA-CLL) showed higher survival than a less adherent but viable fraction of CLL B-cells. The mean survival of TA-CLL cells treated with 10 μM of fludarabine for 48 hours in the presence of MSC were 67.5 ± 3.6 vs 29.8 ± 11.1 without MSC (P<0.05), respectively. When CLL cells with evidence for CD38 expression were co-cultured with MSC, both the percentage of CD38 positive cells and level of expression of CD38 per cell were up-regulated (mean fold change: CD38 percentage, 2.7, p<0.05; CD38 MFI, 1.9, p<0.05) after 2 weeks. In contrast, the CD38 percentage and expression were not changed in cells with minimal CD38 expression when these CLL B-cells were co-cultured with MSC. In addition, co-culture of MSC with CLL cells induced rapid ERK and AKT phosphorylation (within 30 min) in the MSC on immunoblot analysis. When CLL B cells and MSCs were cultured in transwells, the activation of ERK and AKT in MSC occurred at similar levels, indicating that activation of MSC was mediated by soluble factors. In addition, co-culture led to increased secretion of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) as well as a decrease of thrombospondin-1 (TSP-1) in the culture medium. These findings confirm that co-culture of CLL B-cells and MSC culminates in “angiogenic switch.” Taken together, these results strongly suggest interactions between MSC and CLL B cells are a bi-directional process. In leukemic cells, the interaction not only protects against spontaneous and drug induced apoptosis but also leads to an increase in CD38 expression consistent with an activated status. In MSC, the interaction leads to activation of ERK and AKT. Co-culture also facilitates angiogenic switching. These results underscore the dynamic and complex nature of the interactions between bone marrow stromal cells and CLL B-cells. Further studies are needed to dissect how crosstalk between CLL B-cells and MSC relates to disease progression, and determines whether these interactions can be targeted with therapeutic intent.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Ryota Hashimoto ◽  
Youichi Katoh ◽  
Seigo Itoh ◽  
Takafumi Iesaki ◽  
Hiroyuki Daida ◽  
...  

Background: Bone marrow stroma contains adipocytes, osteoblasts, and lymphohematopoietic donor cells. With age, fatty marrow gradually predominates in bone marrow stroma and is a factor underlying age-related fracture and anemia. Thus, it is important to understand the mechanism of adipocyte development in bone marrow stroma. Bone marrow Ca 2+ levels can reach high concentrations of 8 to 40 mM, while circulating plasma Ca 2+ levels normally range from 2.3 to 2.6 mM. However, the effects of a high extracellular calcium concentration ([Ca 2+ ] e ) on adipocyte development in bone marrow stroma remain largely unknown. Methods and Results: We studied the effects of high [Ca 2+ ] e on adipocyte development in bone marrow stroma. First, we used the fura-2 method to examine whether a change in [Ca 2+ ] e alters [Ca 2+ ] i levels in bone marrow stromal cells. Changes of [Ca 2+ ] e from 1.8 mM to 5.4 mM and 10.8 mM significantly increased [Ca 2+ ] i by 1.1 and 1.3 times, respectively. Next, bone marrow stromal cells were cultured for 14 days in high [Ca 2+ ] e (5.4 mM and 10.8 mM) and normal [Ca 2+ ] e (1.8 mM) conditions. Adipocyte development was monitored by Oil Red O staining of cytoplasmic lipids and by the activity of glycerol-3-phosphate dehydrogenase (GPDH). In 5.4 mM and 10.8 mM [Ca 2+ ] e , Oil Red O-stained cells increased significantly by 1.4 and 2.3 times, respectively, and GPDH activity increased significantly by 1.7 and 2.3 times, respectively, compared with the respective values in 1.8 mM [Ca 2+ ] e . Conclusions: These results indicate that high [Ca 2+ ] e induces an increase of [Ca 2+ ] i , which enhances adipocyte development in bone marrow stroma. Further studies are required to determine the influx pathway of Ca 2+ , since prevention of Ca 2+ influx into bone marrow stromal cells might suppress development of fatty marrow and reduce age-related fracture and anemia.


2010 ◽  
Vol 207 (7) ◽  
pp. 1359-1367 ◽  
Author(s):  
Ping Lu ◽  
Isaiah L. Hankel ◽  
Judit Knisz ◽  
Andreas Marquardt ◽  
Ming-Yi Chiang ◽  
...  

A recessive mutation named Justy was found that abolishes B lymphopoiesis but does not impair other major aspects of hematopoiesis. Transplantation experiments showed that homozygosity for Justy prevented hematopoietic progenitors from generating B cells but did not affect the ability of bone marrow stroma to support B lymphopoiesis. In bone marrow from mutant mice, common lymphoid progenitors and pre-pro–B cells appeared normal, but cells at subsequent stages of B lymphopoiesis were dramatically reduced in number. Under culture conditions that promoted B lymphopoiesis, mutant pre-pro–B cells remained alive and began expressing the B cell marker CD19 but failed to proliferate. In contrast, these cells were able to generate myeloid or T/NK precursors. Genetic and molecular analysis demonstrated that Justy is a point mutation within the Gon4-like (Gon4l) gene, which encodes a protein with homology to transcriptional regulators. This mutation was found to disrupt Gon4l pre-mRNA splicing and dramatically reduce expression of wild-type Gon4l RNA and protein. Consistent with a role for Gon4l in transcriptional regulation, the levels of RNA encoding C/EBPα and PU.1 were abnormally high in mutant B cell progenitors. Our findings indicate that the Gon4l protein is required for B lymphopoiesis and may function to regulate gene expression during this process.


Blood ◽  
1990 ◽  
Vol 76 (2) ◽  
pp. 383-392 ◽  
Author(s):  
MG Kruger ◽  
RL Riley ◽  
EA Riley ◽  
JM Elia

Abstract Murine Ly1+ pre-B cell lines, including 70Z/3 and three pre-B cell lines derived from long-term bone marrow cultures, exhibited selective adherence to bone marrow stromal cells. In contrast, splenic B cells, the A20 B-cell lymphoma, and four Ly1- B cell lines derived from long- term bone marrow cultures failed to adhere substiantially to bone marrow cultures failed to adhere substiantially to bone marrow stroma. Ly1+ pre-B cell lines were induced to express kappa light chains by exposure to either lipopolysaccharide (LPS), recombinant interleukin-1 (IL-1), or stromal cells. However, induction of kappa light chains failed to prevent pre-B cell adherence to stromal cells. Supernatants derived from primary bone marrow stromal cells decreased Ly1 expression on the Ly1+ pre-B cell lines. These experiments suggest that (1) expression of immunoglobulin light chains by developing Ly1+ pre-B cells is mediated by bone marrow stromal cells; (2) loss of specific adherence to stroma is progressive and occurs post-light chain induction; and (3) soluble products of stromal cells may downregulate expression of surface Ly1 on otherwise Ly1+ pre-B cells. The importance of these observations to the development of both the Ly1- and Ly1+ B cell lineages in the mouse is discussed.


1999 ◽  
Vol 10 (2) ◽  
pp. 165-181 ◽  
Author(s):  
P.H. Krebsbach ◽  
S.A. Kuznetsov ◽  
P. Bianco ◽  
P. Gehron Robey

The bone marrow stroma consists of a heterogeneous population of cells that provide the structural and physiological support for hematopoietic cells. Additionally, the bone marrow stroma contains cells with a stem-cell-like character that allows them to differentiate into bone, cartilage, adipocytes, and hematopoietic supporting tissues. Several experimental approaches have been used to characterize the development and functional nature of these cells in vivo and their differentiating potential in vitro. In vivo, presumptive osteogenic precursors have been identified by morphologic and immunohistochemical methods. In culture, the stromal cells can be separated from hematopoietic cells by their differential adhesion to tissue culture plastic and their prolonged proliferative potential. In cultures generated from single-cell suspensions of marrow, bone marrow stromal cells grow in colonies, each derived from a single precursor cell termed the colony-forming unit-fibroblast. Culture methods have been developed to expand marrow stromal cells derived from human, mouse, and other species. Under appropriate conditions, these cells are capable of forming new bone after in vivo transplantation. Various methods of cultivation and transplantation conditions have been studied and found to have substantial influence on the transplantation outcome The finding that bone marrow stromal cells can be manipulated in vitro and subsequently form bone in vivo provides a powerful new model system for studying the basic biology of bone and for generating models for therapeutic strategies aimed at regenerating skeletal elements.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3794-3794
Author(s):  
Saradhi Mallampati ◽  
Baohua Sun ◽  
Yun Gong ◽  
Enze Wang ◽  
M. James You ◽  
...  

Abstract Development and progression of leukemia requires interaction of leukemia-initiating cells with their bone marrow niches. The niches serve as the nursery and shelter for the leukemic cells, which can result in drug resistance, disease recurrence, and minimal residual disease, the most important causes for the death of patients with leukemia. Therefore, obliteration of the interaction between the leukemic cells and their niches is of utmost importance in eradicating leukemic cells during therapy to cure the disease. However, little is currently known of the molecular mechanisms underlying the interaction of the two types of cells. Sox4, a SRY-related HMG-box containing transcription factor that is vital during development, plays an important role in leukemia. Published mouse studies demonstrated that increased expression of Sox4 was associated with leukemogenesis. We determined the expression levels of Sox4 by real-time RT-PCR in 100 human leukemic samples and found high levels of expression in B- and T-ALL, but not in AML, CML, CLL, Sezary syndrome, or T cell prolymphocytic leukemia. In accordance, 7 of the 8 ALL cell lines (the exception was 697) we tested showed high expression levels of Sox4, but AML cell lines, normal mature B cells, T cells, and bone marrow CD34+ cells had low levels of expression. Since the majority of clinical B-ALL cases correspond to the pre-B cell stage, we investigated the role of Sox4 in a pre-B cell line (Nalm6) by lentivirus-mediated RNAi. Remarkably, knockdown of Sox4 in Nalm6 cells caused 70% reduction in the formation of leukemic cell clusters under the monolayer of co-cultured M2-10B4 bone marrow stromal cells, a phenomenon known as pseudo-emperipolesis. Similar results were obtained with ex vivo cultured bone marrow cells from conditional Sox4 knockout mice that displayed B cell developmental arrest at the transition from pro-B to pre-B cell stage and an absence of pre-B cells. These findings suggested that Sox4 is required for the interaction of the developing B cells or leukemic cells with bone marrow stromal cells, a component of the bone marrow niche. Since CXCR4/SDF1-mediated “homing” is known to be required for pseudo-emperipolesis, we tested the effect of Sox4 on Nalm6 cell migration toward SDF1 gradient and found that Sox4 did not affect the migration, suggesting that Sox4 is not acting through “homing”. Instead, our data indicated that the role of Sox4 in the interaction of leukemic cells with stromal cells is most likely mediated by its ability in enhancing the adhesion of the leukemic cells because we found that lentivirus-medicated overexpression of Sox4 in the 697 B cell line caused the suspension cells to display a spindle and adhesive morphology. In addition, 21% of the putative Sox4 downstream genes that we identified by multiple sets of gene expression microarray experiments are known to be involved in cell adhesion. Moreover, we found that the changes in gene expression profile of leukemic cells upon Sox4 knockdown or overexpression significantly overlap with the changes in response to the presence of bone marrow stromal cells in co-culture, indicating that Sox4 pathways are involved in leukemic cell response to stromal cell signaling. Based on these findings we hypothesize that deletion of Sox4 abolishes the interaction between the developing lymphocytes and their niches during lymphopoiesis. Conversely, overexpression of Sox4 may enforce these cells to over-interact with the niches so that they are overexposed to local growth factor stimuli. If superimposed with other genetic and/or epigenetic changes in the developing lymphocytes, such over-interaction may result in the development of leukemia. In case of established leukemia, such over-interaction may lead to the enhanced protection of leukemic cells by their niches. Therefore, the role of Sox4 in the interaction of developing lymphocytes or leukemic cells with their niches is like “rooting into the soil” of a growing tree, abbreviated as “rooting”.


Blood ◽  
1990 ◽  
Vol 76 (2) ◽  
pp. 383-392
Author(s):  
MG Kruger ◽  
RL Riley ◽  
EA Riley ◽  
JM Elia

Murine Ly1+ pre-B cell lines, including 70Z/3 and three pre-B cell lines derived from long-term bone marrow cultures, exhibited selective adherence to bone marrow stromal cells. In contrast, splenic B cells, the A20 B-cell lymphoma, and four Ly1- B cell lines derived from long- term bone marrow cultures failed to adhere substiantially to bone marrow cultures failed to adhere substiantially to bone marrow stroma. Ly1+ pre-B cell lines were induced to express kappa light chains by exposure to either lipopolysaccharide (LPS), recombinant interleukin-1 (IL-1), or stromal cells. However, induction of kappa light chains failed to prevent pre-B cell adherence to stromal cells. Supernatants derived from primary bone marrow stromal cells decreased Ly1 expression on the Ly1+ pre-B cell lines. These experiments suggest that (1) expression of immunoglobulin light chains by developing Ly1+ pre-B cells is mediated by bone marrow stromal cells; (2) loss of specific adherence to stroma is progressive and occurs post-light chain induction; and (3) soluble products of stromal cells may downregulate expression of surface Ly1 on otherwise Ly1+ pre-B cells. The importance of these observations to the development of both the Ly1- and Ly1+ B cell lineages in the mouse is discussed.


1999 ◽  
Vol 343 (3) ◽  
pp. 663-668 ◽  
Author(s):  
Karen P. SCHOFIELD ◽  
John T. GALLAGHER ◽  
Guido DAVID

Heparan sulphate proteoglycans (HSPGs) present on the surface of bone marrow stromal cells and in the extracellular matrix (ECM) have important roles in the control of adhesion and growth of haemopoietic stem and progenitor cells. The two main groups of proteoglycans which contain heparan sulphate chains are members of the syndecan and glypican families. In this study we have identified the main surface membrane and matrix-associated HSPGs present in normal human bone marrow stroma formed in long-term culture. Proteoglycans were extracted from the adherent stromal layers and treated with heparitinase and chondroitinase ABC. The core proteins were detected by Western blotting using antibodies directed against syndecans-1-4, glypican-1 and the ECM HSPG, perlecan. Stromal cell expression at the RNA level was detected by Northern blotting and by reverse transcription PCR. Glypican-1, syndecan-3 and syndecan-4 were the major cell-membrane HSPG species and perlecan was the major ECM proteoglycan. There was no evidence for expression of syndecan-1 protein. Syndecan-3 was expressed mainly as a variant or processed 50-55 kDa core protein and in lower amounts as the characteristic 125 kDa core protein. These results suggest that syndecan-3, syndecan-4 and glypican-1 present on the surface of marrow stromal cells, together with perlecan in the ECM, may be responsible for creating the correct stromal ‘niche’ for the maintenance and development of haemopoietic stem and progenitor cells. The detection of a variant form of syndecan-3 as a major stromal HSPG suggests a specific role for this syndecan in haemopoiesis.


Sign in / Sign up

Export Citation Format

Share Document