scholarly journals HIV-1–induced activation of CD4+ T cells creates new targets for HIV-1 infection in human lymphoid tissue ex vivo

Blood ◽  
2008 ◽  
Vol 111 (2) ◽  
pp. 699-704 ◽  
Author(s):  
Angélique Biancotto ◽  
Sarah J. Iglehart ◽  
Christophe Vanpouille ◽  
Cristian E. Condack ◽  
Andrea Lisco ◽  
...  

We demonstrate mechanisms by which HIV-1 appears to facilitate its own infection in ex vivo–infected human lymphoid tissue. In this system, HIV-1 readily infects various CD4+ T cells, but productive viral infection was supported predominantly by activated T cells expressing either CD25 or HLA-DR or both (CD25/HLA-DR) but not other activation markers: There was a strong positive correlation (r = 0.64, P = .001) between virus production and the number of CD25+/HLA-DR+ T cells. HIV-1 infection of lymphoid tissue was associated with activation of both HIV-1–infected and uninfected (bystanders) T cells. In these tissues, apoptosis was selectively increased in T cells expressing CD25/HLA-DR and p24gag but not in cells expressing either of these markers alone. In the course of HIV-1 infection, there was a significant increase in the number of activated (CD25+/HLA-DR+) T cells both infected and uninfected (bystander). By inducing T cells to express particular markers of activation that create new targets for infection, HIV-1 generates in ex vivo lymphoid tissues a vicious destructive circle of activation and infection. In vivo, such self-perpetuating cycle could contribute to HIV-1 disease.

2006 ◽  
Vol 80 (2) ◽  
pp. 854-865 ◽  
Author(s):  
Françoise Gondois-Rey ◽  
Angelique Biancotto ◽  
Marcelo Antonio Fernandez ◽  
Lise Bettendroffer ◽  
Jana Blazkova ◽  
...  

ABSTRACT The persistence of human immunodeficiency virus type 1 (HIV-1) in memory CD4+ T cells is a major obstacle to the eradication of the virus with current antiretroviral therapy. Here, we investigated the effect of the activation status of CD4+ T cells on the predominance of R5 and X4 HIV-1 variants in different subsets of CD4+ T cells in ex vivo-infected human lymphoid tissues and peripheral blood mononuclear cells (PBMCs). In these cell systems, we examined the sensitivity of HIV replication to reverse transcriptase inhibitors. We demonstrate that R5 HIV-1 variants preferentially produced productive infection in HLA-DR− CD62L− CD4+ T cells. These cells were mostly in the G1b phase of the cell cycle, divided slowly, and expressed high levels of CCR5. In contrast, X4 HIV-1 variants preferentially produced productive infection in activated HLA-DR+ CD62L+ CD4+ T cells, which expressed high levels of CXCR4. The abilities of the nucleoside reverse transcriptase inhibitors (NRTI) zidovudine and lamivudine to stop HIV-1 replication were 20 times greater in activated T cells than in slowly dividing HLA-DR− CD62L− CD4+ T cells. This result, demonstrated both in a highly physiologically relevant ex vivo lymphoid tissue model and in PBMCs, correlated with higher levels of thymidine kinase mRNA in activated than in slowly dividing HLA-DR− CD62L− CD4+ T cells. The non-NRTI nevirapine was equally efficient in both cell subsets. The lymphoid tissue and PBMC-derived cell systems represent well-defined models which could be used as new tools for the study of the mechanism of resistance to HIV-1 inhibitors in HLA-DR− CD62L− CD4+ T cells.


1999 ◽  
Vol 73 (5) ◽  
pp. 3968-3974 ◽  
Author(s):  
Svetlana Glushakova ◽  
Jean-Charles Grivel ◽  
Kalachar Suryanarayana ◽  
Pascal Meylan ◽  
Jeffrey D. Lifson ◽  
...  

ABSTRACT The nef gene is important for the pathogenicity associated with simian immunodeficiency virus infection in rhesus monkeys and with human immunodeficiency virus type 1 (HIV-1) infection in humans. The mechanisms by which nef contributes to pathogenesis in vivo remain unclear. We investigated the contribution of nef to HIV-1 replication in human lymphoid tissue ex vivo by studying infection with parental HIV-1 strain NL4-3 and with anef mutant (ΔnefNL4-3). In human tonsillar histocultures, NL4-3 replicated to higher levels than ΔnefNL4-3 did. Increased virus production with NL4-3 infection was associated with increased numbers of productively infected cells and greater loss of CD4+ T cells over time. While the numbers of productively infected T cells were increased in the presence of nef, the levels of viral expression and production per infected T cell were similar whether the nefgene was present or not. Exogenous interleukin-2 (IL-2) increased HIV-1 production in NL4-3-infected tissue in a dose-dependent manner. In contrast, ΔnefNL4-3 production was enhanced only marginally by IL-2. Thus, Nef can facilitate HIV-1 replication in human lymphoid tissue ex vivo by increasing the numbers of productively infected cells and by increasing the responsiveness to IL-2 stimulation.


2004 ◽  
Vol 78 (13) ◽  
pp. 7061-7068 ◽  
Author(s):  
Wendy Fitzgerald ◽  
Andrew W. Sylwester ◽  
Jean-Charles Grivel ◽  
Jeffrey D. Lifson ◽  
Leonid B. Margolis

ABSTRACT Ex vivo human immunodeficiency virus type 1 (HIV-1) infection of human lymphoid tissue recapitulates some aspects of in vivo HIV-1 infection, including a severe depletion of CD4+ T cells and suppression of humoral immune responses to recall antigens or to polyclonal stimuli. These effects are induced by infection with X4 HIV-1 variants, whereas infection with R5 variants results in only mild depletion of CD4+ T cells and no suppression of immune responses. To study the mechanisms of suppression of immune responses in this ex vivo system, we used aldrithiol-2 (AT-2)-inactivated virions that have functional envelope glycoproteins but are not infectious and do not deplete CD4+ T cells in human lymphoid tissues ex vivo. Nevertheless, AT-2-inactivated X4 (but not R5) HIV-1 virions, even with only a brief exposure, inhibit antibody responses in human lymphoid tissue ex vivo, similarly to infectious virus. This phenomenon is mediated by soluble immunosuppressive factor(s) secreted by tissue exposed to virus.


2000 ◽  
Vol 74 (17) ◽  
pp. 8077-8084 ◽  
Author(s):  
Jean-Charles Grivel ◽  
Nina Malkevitch ◽  
Leonid Margolis

ABSTRACT Progression of human immunodeficiency virus (HIV) disease is associated with massive death of CD4+ T cells along with death and/or dysfunction of CD8+ T cells. In vivo, both HIV infection per se and host factors may contribute to the death and/or dysfunction of CD4+ and CD8+ T cells. Progression of HIV disease is often characterized by a switch from R5 to X4 HIV type 1 (HIV-1) variants. In human lymphoid tissues ex vivo, it was shown that HIV infection is sufficient for CD4+T-cell depletion. Here we address the question of whether infection of human lymphoid tissue ex vivo with prototypic R5 or X4 HIV variants also depletes or impairs CD8+ T cells. We report that whereas productive infection of lymphoid tissue ex vivo with R5 and X4 HIV-1 isolates induced apoptosis in CD4+ T cells, neither viral isolate induced apoptosis in CD8+ T cells. Moreover, in both infected and control tissues we found similar numbers of CD8+ T cells and similar production of cytokines by these cells in response to phorbol myristate acetate or anti-CD3–anti-CD28 stimulation. Thus, whereas HIV-1 infection per se in human lymphoid tissue is sufficient to trigger apoptosis in CD4+ T cells, the death of CD8+ T cells apparently requires additional factors.


2016 ◽  
Vol 91 (3) ◽  
Author(s):  
Chaobaihui Ye ◽  
Weiming Wang ◽  
Liang Cheng ◽  
Guangming Li ◽  
Michael Wen ◽  
...  

ABSTRACT Despite success in viral inhibition and CD4 T cell recovery by highly active antiretroviral treatment (HAART), HIV-1 is still not curable due to the persistence of the HIV-1 reservoir during treatment. One patient with acute myeloid leukemia who received allogeneic hematopoietic stem cell transplantation from a homozygous CCR5 Δ32 donor has had no detectable viremia for 9 years after HAART cessation. This case has inspired a field of HIV-1 cure research focusing on engineering HIV-1 resistance in permissive cells. Here, we employed a glycosylphosphatidylinositol (GPI)-scFv X5 approach to confer resistance of human primary CD4 T cells to HIV-1. We showed that primary CD4 T cells expressing GPI-scFv X5 were resistant to CCR5 (R5)-, CXCR4 (X4)-, and dual-tropic HIV-1 and had a survival advantage compared to control cells ex vivo. In a hu-PBL mouse study, GPI-scFv X5-transduced CD4 T cells were selected in peripheral blood and lymphoid tissues upon HIV-1 infection. Finally, GPI-scFv X5-transduced CD4 T cells, after being cotransfused with HIV-infected cells, showed significantly reduced viral loads and viral RNA copy numbers relative to CD4 cells in hu-PBL mice compared to mice with GPI-scFv AB65-transduced CD4 T cells. We conclude that GPI-scFv X5-modified CD4 T cells could potentially be used as a genetic intervention against both R5- and X4-tropic HIV-1 infections. IMPORTANCE Blocking of HIV-1 entry is one of most promising approaches for therapy. Genetic disruption of the HIV-1 coreceptor CCR5 by nucleases in T cells is under 2 clinical trials and leads to reduced viremia in patients. However, the emergence of viruses using the CXCR4 coreceptor is a concern for therapies applying single-coreceptor disruption. Here, we report that HIV-1-permissive CD4 T cells engineered with GPI-scFv X5 are resistant to R5-, X4-, or dual-tropic virus infection ex vivo. In a preclinical study using hu-PBL mice, we show that CD4 T cells were protected and that GPI-scFv X5-transduced cells were selected in HIV-1-infected animals. Moreover, we show that GPI-scFv X5-transduced CD4 T cells exerted a negative effect on virus replication in vivo. We conclude that GPI-scFv X5-modified CD4 T cells could potentially be used as a genetic intervention against both R5- and X4-tropic HIV-1 infections.


Cell Reports ◽  
2015 ◽  
Vol 12 (10) ◽  
pp. 1555-1563 ◽  
Author(s):  
Nicole L.K. Galloway ◽  
Gilad Doitsh ◽  
Kathryn M. Monroe ◽  
Zhiyuan Yang ◽  
Isa Muñoz-Arias ◽  
...  

2020 ◽  
Author(s):  
Thomas Vollbrecht ◽  
Aaron O. Angerstein ◽  
Bryson Menke ◽  
Nikesh M. Kumar ◽  
Michelli Faria Oliveira ◽  
...  

Abstract BackgroundA reservoir of replication-competent but latent virus is the main obstacle to a cure for HIV-infection. Much of this reservoir resides in memory CD4 T cells. We hypothesized that these cells can be reactivated with antigens from HIV and other common pathogens to reverse latency. ResultsWe obtained mononuclear cells from the peripheral blood of antiretroviral-treated patients with suppressed viremia. We tested pools of peptides and proteins derived from HIV and from other pathogens including CMV for their ability to reverse latency ex vivo by activation of memory responses. We assessed activation of the CD4 T cells by measuring the up-regulation of cell-surface CD69. We assessed HIV-expression using two assays: a real-time PCR assay for virion-associated viral RNA and a droplet digital PCR assay for cell-associated, multiply spliced viral mRNA. Reversal of latency occurred in a minority of cells from some participants, but no single antigen induced HIV-expression ex vivo consistently. When reversal of latency was induced by a specific peptide pool or protein, the extent was proportionally greater than that of T cell activation. ConclusionsIn this group of patients in whom antiretroviral therapy was started during chronic infection, the latent reservoir does not appear to consistently reside in CD4 T cells of a predominant antigen-specificity. Peptide-antigens reversed HIV-latency ex vivo with modest and variable activity. When latency was reversed by specific peptides or proteins, it was proportionally greater than the extent of T cell activation, suggesting partial enrichment of the latent reservoir in cells of specific antigen-reactivity.


Retrovirology ◽  
2010 ◽  
Vol 7 (1) ◽  
Author(s):  
Michael Schindler ◽  
Devi Rajan ◽  
Carina Banning ◽  
Peter Wimmer ◽  
Herwig Koppensteiner ◽  
...  

2007 ◽  
Vol 81 (12) ◽  
pp. 6563-6572 ◽  
Author(s):  
Raghavan Chinnadurai ◽  
Devi Rajan ◽  
Jan Münch ◽  
Frank Kirchhoff

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) fusion inhibitors blocking viral entry by binding the gp41 heptad repeat 1 (HR1) region offer great promise for antiretroviral therapy, and the first of these inhibitors, T20 (Fuzeon; enfuvirtide), is successfully used in the clinic. It has been reported previously that changes in the 3-amino-acid GIV motif at positions 36 to 38 of gp41 HR1 mediate resistance to T20 but usually not to second-version fusion inhibitors, such as T1249, which target an overlapping but distinct region in HR1 including a conserved hydrophobic pocket (HP). Based on the common lack of cross-resistance and the difficulty of selecting T1249-resistant HIV-1 variants, it has been suggested that the determinants of resistance to first- and second-version fusion inhibitors may be different. To further assess HIV-1 resistance to fusion inhibitors and to analyze where changes in HR1 are tolerated, we randomized 16 codons in the HR1 region, including those making contact with HR2 codons and/or encoding residues in the GIV motif and the HP. We found that changes only at positions 37I, 38V, and 40Q near the N terminus of HR1 were tolerated. The propagation of randomly gp41-mutated HIV-1 variants in the presence of T1249 allowed the effective selection of highly resistant forms, all containing changes in the IV residues. Overall, the extent of T1249 resistance was inversely correlated to viral fitness and cytopathicity. Notably, one HIV-1 mutant showing ∼10-fold-reduced susceptibility to T1249 inhibition replicated with wild type-like kinetics and caused substantial CD4+-T-cell depletion in ex vivo-infected human lymphoid tissue in the presence and absence of an inhibitor. Taken together, our results show that the GIV motif also plays a key role in resistance to second-version fusion inhibitors and suggest that some resistant HIV-1 variants may be pathogenic in vivo.


2018 ◽  
Vol 14 (8) ◽  
pp. e1007269 ◽  
Author(s):  
Dorota Kmiec ◽  
Bengisu Akbil ◽  
Swetha Ananth ◽  
Dominik Hotter ◽  
Konstantin M. J. Sparrer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document