scholarly journals Rac GTPase isoforms Rac1 and Rac2 play a redundant and crucial role in T-cell development

Blood ◽  
2008 ◽  
Vol 112 (5) ◽  
pp. 1767-1775 ◽  
Author(s):  
Fukun Guo ◽  
Jose A. Cancelas ◽  
David Hildeman ◽  
David A. Williams ◽  
Yi Zheng

Abstract Rac GTPases have been implicated in the regulation of diverse functions in various blood cell lineages, but their role in T-cell development is not well understood. We have carried out conditional gene targeting to achieve hematopoietic stem cell (HSC)– or T-cell lineage–specific deletion of Rac1 or Rac1/Rac2 by crossbreeding the Mx-Cre or Lck-Cre transgenic mice with Rac1loxp/loxp or Rac1loxp/loxp;Rac2−/− mice. We found that (1) HSC deletion of both Rac1 and Rac2 inhibited production of common lymphoid progenitors (CLPs) in bone marrow and suppressed T-cell development in thymus and peripheral organs, whereas deletion of Rac1 moderately affected CLP production and T-cell development. (2) T cell–specific deletion of Rac1 did not affect T-cell development, whereas deletion of both Rac1 and Rac2 reduced immature CD4+CD8+ and mature CD4+ populations in thymus as well as CD4+ and CD8+ populations in spleen. (3) The developmental defects of Rac1/Rac2 knockout T cells were associated with proliferation, survival, adhesion, and migration defects. (4) Rac1/Rac2 deletion suppressed T-cell receptor–mediated proliferation, IL-2 production, and Akt activation in thymocytes. Thus, Rac1 and Rac2 have unique roles in CLP production and share a redundant but essential role in later stages of T-cell development by regulating survival and proliferation signals.

2015 ◽  
Vol 112 (44) ◽  
pp. E6020-E6027 ◽  
Author(s):  
Martijn H. Brugman ◽  
Anna-Sophia Wiekmeijer ◽  
Marja van Eggermond ◽  
Ingrid Wolvers-Tettero ◽  
Anton W. Langerak ◽  
...  

The fate and numbers of hematopoietic stem cells (HSC) and their progeny that seed the thymus constitute a fundamental question with important clinical implications. HSC transplantation is often complicated by limited T-cell reconstitution, especially when HSC from umbilical cord blood are used. Attempts to improve immune reconstitution have until now been unsuccessful, underscoring the need for better insight into thymic reconstitution. Here we made use of the NOD-SCID-IL-2Rγ−/− xenograft model and lentiviral cellular barcoding of human HSCs to study T-cell development in the thymus at a clonal level. Barcoded HSCs showed robust (>80% human chimerism) and reproducible myeloid and lymphoid engraftment, with T cells arising 12 wk after transplantation. A very limited number of HSC clones (<10) repopulated the xenografted thymus, with further restriction of the number of clones during subsequent development. Nevertheless, T-cell receptor rearrangements were polyclonal and showed a diverse repertoire, demonstrating that a multitude of T-lymphocyte clones can develop from a single HSC clone. Our data imply that intrathymic clonal fitness is important during T-cell development. As a consequence, immune incompetence after HSC transplantation is not related to the transplantation of limited numbers of HSC but to intrathymic events.


2000 ◽  
Vol 20 (18) ◽  
pp. 6677-6685 ◽  
Author(s):  
Robert J. Barndt ◽  
Meifang Dai ◽  
Yuan Zhuang

ABSTRACT Lymphocyte development and differentiation are regulated by the basic helix-loop-helix (bHLH) transcription factors encoded by theE2A and HEB genes. These bHLH proteins bind to E-box enhancers in the form of homodimers or heterodimers and, consequently, activate transcription of the target genes. E2A homodimers are the predominant bHLH proteins present in B-lineage cells and are shown genetically to play critical roles in B-cell development. E2A-HEB heterodimers, the major bHLH dimers found in thymocyte extracts, are thought to play a similar role in T-cell development. However, disruption of either the E2A or HEBgene led to only partial blocks in T-cell development. The exact role of E2A-HEB heterodimers and possibly the E2A and HEB homodimers in T-cell development cannot be distinguished in simple disruption analysis due to a functional compensation from the residual bHLH homodimers. To further define the function of E2A-HEB heterodimers, we generated and analyzed a dominant negative allele of HEB, which produces a physiological amount of HEB proteins capable of forming nonfunctional heterodimers with E2A proteins. Mice carrying this mutation show a stronger and earlier block in T-cell development than HEB complete knockout mice. The developmental block is specific to the α/β T-cell lineage at a stage before the completion of V(D)J recombination at the TCRβ gene locus. This defect is intrinsic to the T-cell lineage and cannot be rescued by expression of a functional T-cell receptor transgene. These results indicate that E2A-HEB heterodimers play obligatory roles both before and after TCRβ gene rearrangement during the α/β lineage T-cell development.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3748-3748
Author(s):  
Bidisha Chanda ◽  
Kiyoko Izawa ◽  
Ratanakanit Harnprasopwat ◽  
Keisuke Takahashi ◽  
Seiichiro Kobayashi ◽  
...  

Abstract Abstract 3748 Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder generally believed to originate from a hematopoietic stem cell carrying the BCR-ABL fusion gene, which generally encodes 210kD and 190kD constitutively active tyrosine kinases termed as p210 and p190, respectively. In spite of the putative stem cell origin and the competence for differentiation toward mature B cells, there is a longstanding consensus that CML never involves the T cell lineage at least in chronic phase. To gain insight into this apparent conflict, we used in vitro T cell differentiation model from murine pluripotent stem cells (PSCs) as well as hematopoietic stem cells (HSCs). C57BL/6 MEFs were reprogrammed using a polycistronic lentiviral Tet-On vector encoding human Oct4, Sox2 and Klf4, which were tandemly linked via porcine teschovirus-1 2A peptides, together with another lentiviral vector expressing rtTA driven by the EF-1a promoter. Almost all the vector sequences including the transgenes were deleted by adenovirus-mediated transduction of Crerecombinase after derivation of iPSCs, and only remnant 291-bp LTRs containing a single loxP site remained in the genome. A clone of MEF-iPSCs were retrovirally transduced with p190DccER, a ligand-controllable p190-estrogen receptor fusion protein, whose tyrosine kinase activity absolutely depends on 4-hydroxytamoxyfen (4-HT).For T cell lineage differentiation, p190DccER-MEF-iPSCs were recovered from a feeder-free culture supplemented with LIF and plated onto a subconfluent OP9-DL1 monolayer in the presence of Flt3 ligand and IL7 with or without 0.5 mM 4-HT.After 3 weeks of culture, iPSC-derived blood cells were collected and subjected to FACS analysis for their lineage confirmation. About 70% of lymphocyte-like cells from the 4-HT(-) culture expressed CD3, but only 20% of counterparts from the 4-HT(+)culture expressed CD3, suggesting impaired T cell development by Bcr-Abl. Next, c-Kit+Sca1+Lin− (KSL) bone marrow cells were prepared by FACS from 8-weeks old C57BL/6 mice treated with 5-FU. KSL cells were similarly transduced with p190DccER and were subjected to the OP9-DL1co-culture system with or without 0.5 mM 4-HT.After 2 weeks of culture, 90% of lymphocytes from the 4-HT(-)culture revealed CD3+TCRβ+ phenotype, but only 30% of those were double positive in the presence of 4-HT(+). In addition, 96% of lymphocytes from the 4-HT(-) culture progressed to the DN2 stage with c-Kit−CD44+CD25+phenotype, whereas 40% of those from the 4-HT(+) culture arrested at the DN1 stage showing c-Kit+CD44+CD25−.Since IL7 plays a central role at the stage from DN1 to DN2 of progenitor T cells, Bcr-Abl is suggested to impair T cell development possibly through interfering with the IL7 signal. The precise mechanism underlying impaired T lymphopoiesis by Bcr-Abl is under investigation. Disclosures: No relevant conflicts of interest to declare.


1995 ◽  
Vol 181 (4) ◽  
pp. 1445-1458 ◽  
Author(s):  
B F Haynes ◽  
C S Heinly

To determine events that transpire during the earliest stages of human T cell development, we have studied fetal tissues before (7 wk), during (8.2 wk), and after (9.5 wk to birth) colonization of the fetal thymic rudiment with hematopoietic stem cells. Calculation of the approximate volumes of the 7- and 8.2-wk thymuses revealed a 35-fold increase in thymic volumes during this time, with 7-wk thymus height of 160 microM and volume of 0.008 mm3, and 8.2-wk thymus height of 1044 microM and volume of 0.296 mm3. Human thymocytes in the 8.2-wk thymus were CD4+ CD8 alpha+ and cytoplasmic CD3 epsilon+ cCD3 delta+ CD8 beta- and CD3 zetta-. Only 5% of 8-wk thymocytes were T cell receptor (TCR)-beta+, &lt; 0.1% were TCR-gamma+, and none reacted with monoclonal antibodies against TCR-delta. During the first 16 wk of gestation, we observed developmentally regulated expression of CD2 and CD8 beta (appearing at 9.5 wk), CD1a,b, and c molecules (CD1b, then CD1c, then CD1a), TCR molecules (TCR-beta, then TCR-delta), CD45RA and CD45RO isoforms, CD28 (10 wk), CD3 zeta (12-13 wk), and CD6 (12,75 wk). Whereas CD2 was not expressed at the time of initiation of thymic lymphopoiesis, a second CD58 ligand, CD48, was expressed at 8.2 wk, suggesting a role for CD48 early in thymic development. Taken together, these data define sequential phenotypic and morphologic changes that occur in human thymus coincident with thymus colonization by hematopoietic stem cells and provide insight into the molecules that are involved in the earliest stages of human T cell development.


2001 ◽  
Vol 194 (1) ◽  
pp. 99-106 ◽  
Author(s):  
David Allman ◽  
Fredrick G. Karnell ◽  
Jennifer A. Punt ◽  
Sonia Bakkour ◽  
Lanwei Xu ◽  
...  

Notch1 signaling is required for T cell development. We have previously demonstrated that expression of a dominant active Notch1 (ICN1) transgene in hematopoietic stem cells (HSCs) leads to thymic-independent development of CD4+CD8+ double-positive (DP) T cells in the bone marrow (BM). To understand the function of Notch1 in early stages of T cell development, we assessed the ability of ICN1 to induce extrathymic T lineage commitment in BM progenitors from mice that varied in their capacity to form a functional pre-T cell receptor (TCR). Whereas mice repopulated with ICN1 transduced HSCs from either recombinase deficient (Rag-2−/−) or Src homology 2 domain–containing leukocyte protein of 76 kD (SLP-76)−/− mice failed to develop DP BM cells, recipients of ICN1-transduced Rag-2−/− progenitors contained two novel BM cell populations indicative of pre-DP T cell development. These novel BM populations are characterized by their expression of CD3ε and pre-Tα mRNA and the surface proteins CD44 and CD25. In contrast, complementation of Rag-2−/− mice with a TCRβ transgene restored ICN1-induced DP development in the BM within 3 wk after BM transfer (BMT). At later time points, this population selectively and consistently gave rise to T cell leukemia. These findings demonstrate that Notch signaling directs T lineage commitment from multipotent progenitor cells; however, both expansion and leukemic transformation of this population are dependent on T cell–specific signals associated with development of DP thymocytes.


2020 ◽  
Vol 88 ◽  
pp. S51
Author(s):  
Victoria Sun ◽  
Amelie Montel-Hagen ◽  
David Casero ◽  
Steven Tsai ◽  
Alexandre Zampieri ◽  
...  

Author(s):  
Koichi Akashi ◽  
Motonari Kondo ◽  
Annette M. Schlageter ◽  
Irving L. Weissman

1996 ◽  
Vol 93 (15) ◽  
pp. 7877-7881 ◽  
Author(s):  
G. Bouvier ◽  
F. Watrin ◽  
M. Naspetti ◽  
C. Verthuy ◽  
P. Naquet ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-32 ◽  
Author(s):  
Oxana Dobrovinskaya ◽  
Iván Delgado-Enciso ◽  
Laura Johanna Quintero-Castro ◽  
Carlos Best-Aguilera ◽  
Rocío Monserrat Rojas-Sotelo ◽  
...  

T leukemogenesis is a multistep process, where the genetic errors during T cell maturation cause the healthy progenitor to convert into the leukemic precursor that lost its ability to differentiate but possesses high potential for proliferation, self-renewal, and migration. A new misdirecting “leukemogenic” signaling network appears, composed by three types of participants which are encoded by (1) genes implicated in determined stages of T cell development but deregulated by translocations or mutations, (2) genes which normally do not participate in T cell development but are upregulated, and (3) nondifferentially expressed genes which become highly interconnected with genes expressed differentially. It appears that each of three groups may contain genes coding ion channels. In T cells, ion channels are implicated in regulation of cell cycle progression, differentiation, activation, migration, and cell death. In the present review we are going to reveal a relationship between different genetic defects, which drive the T cell neoplasias, with calcium signaling and ion channels. We suggest that changes in regulation of various ion channels in different types of the T leukemias may provide the intracellular ion microenvironment favorable to maintain self-renewal capacity, arrest differentiation, induce proliferation, and enhance motility.


Sign in / Sign up

Export Citation Format

Share Document