scholarly journals Lyn, PKC-δ, SHIP-1 interactions regulate GPVI-mediated platelet-dense granule secretion

Blood ◽  
2009 ◽  
Vol 114 (14) ◽  
pp. 3056-3063 ◽  
Author(s):  
Ramya Chari ◽  
Soochong Kim ◽  
Swaminathan Murugappan ◽  
Archana Sanjay ◽  
James L. Daniel ◽  
...  

Protein kinase C-δ (PKC-δ) is expressed in platelets and activated downstream of protease-activated receptors (PARs) and glycoprotein VI (GPVI) receptors. We have previously shown that PKC-δ positively regulates PAR-mediated dense granule secretion, whereas it negatively regulates GPVI-mediated dense granule secretion. We further investigated the mechanism of such differential regulation of dense granule release by PKC-δ in platelets. SH2 domain–containing inositol phosphatase-1 (SHIP-1) is phosphorylated on Y1020, a marker for its activation, upon stimulation of human platelets with PAR agonists SFLLRN and AYPGKF or GPVI agonist convulxin. GPVI-mediated SHIP-1 phosphorylation occurred rapidly at 15 seconds, whereas PAR-mediated phosphorylation was delayed, occurring at 1 minute. Lyn and SHIP-1, but not SHIP-2 or Shc, preferentially associated with PKC-δ on stimulation of platelets with a GPVI agonist, but not with a PAR agonist. In PKC-δ–null murine platelets, convulxin-induced SHIP-1 phosphorylation was inhibited. Furthermore, in Lyn null murine platelets, GPVI-mediated phosphorylations on Y-1020 of SHIP-1 and Y311 of PKC-δ were inhibited. In murine platelets lacking Lyn or SHIP-1, GPVI-mediated dense granule secretions are potentiated, whereas PAR-mediated dense granule secretions are inhibited. Therefore, we conclude that Lyn-mediated phosphorylations of PKC-δ and SHIP-1 and their associations negatively regulate GPVI-mediated dense granule secretion in platelets.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3630-3630
Author(s):  
Ramya Chari ◽  
Soochong Kim ◽  
Swaminathan Murugappan ◽  
James L. Daniel ◽  
Satya P. Kunapuli

Abstract Collagen-induced glycoprotein (GP) VI-mediated and thrombin-induced protease activated receptors (PAR)-mediated activation are important signaling pathways regulating dense granule secretion in platelets. Protein kinase C (PKC) isoforms play a crucial role in platelet secretion and we have previously shown that PKCδ plays a ying-yang role in dense granule release by different agonists (Murugappan et al, J. Biol. Chem. 2004). PKCδ isoform positively regulates PAR-mediated platelet dense granule release, whereas it negatively regulates GPVI-mediated dense granule release. In this study, we investigated the mechanism of such differential regulation by PKCδ downstream of PAR and GPVI pathways. We hypothesize that the differential association of PKCδ with phosphatases downstream of GPVI and PAR receptors differentially regulate dense granule secretion. More specifically, we explored the functional relevance of the interaction of PKCδ with Src homology 2-domain containing Inositol Phosphatases (SHIP), 5′-inositol phosphatases in platelets. In our studies, SHIP-1 was tyrosine phosphorylated by both PARs and GPVI receptors and its phosphorylation followed different activation kinetics. Whereas PAR-mediated SHIP-1 phosphorylation (Y1020) was delayed and occurred as late as 120 seconds, the GPVI-mediated SHIP-1 phosphorylation was rapid, starting as early as 15 seconds and peaked at 60 seconds. Co-immunoprecipitation experiments revealed that SHIP-1, and not SHIP-2, associated with PKCδ upon stimulation of platelets with GPVI agonist, convulxin. However, such association did not occur with the PAR agonists. GPVI-mediated SHIP-1 phosphorylation failed to occur in platelets from mice lacking Lyn kinase suggesting a role for Lyn in regulating SHIP-1 phosphorylation. In murine platelets lacking either Lyn or SHIP-1, dense granule secretion was potentiated by convulxin and not by thrombin. We attribute the phosphorylation and association of SHIP-1 with PKCδ to be critical for the regulation of agonist-induced dense granule secretion in platelets. Based on the above results, we conclude that the preferential association of SHIP-1 with PKCδ upon stimulation of GPVI receptor results in the negative regulation of collagen-induced dense granule release in platelets.


2011 ◽  
Vol 436 (2) ◽  
pp. 469-480 ◽  
Author(s):  
Knut Fälker ◽  
Linda Haglund ◽  
Peter Gunnarsson ◽  
Martina Nylander ◽  
Tomas L. Lindahl ◽  
...  

PARs (protease-activated receptors) 1 and 4 belong to the family of G-protein-coupled receptors which induce both Gα12/13 and Gαq signalling. By applying the specific PAR1- and PAR4-activating hexapeptides, SFLLRN and AYPGKF respectively, we found that aggregation of isolated human platelets mediated via PAR1, but not via PAR4, is abolished upon homologous receptor activation in a concentration- and time-dependent fashion. This effect was not due to receptor internalization, but to a decrease in Ca2+ mobilization, PKC (protein kinase C) signalling and α-granule secretion, as well as to a complete lack of dense granule secretion. Interestingly, subthreshold PAR4 activation rapidly abrogated PAR1 signalling desensitization by differentially reconstituting these affected signalling events and functional responses, which was sufficient to re-establish aggregation. The lack of ADP release and P2Y12 receptor-induced Gαi signalling accounted for the loss of the aggregation response, as mimicking Gαi/z signalling with 2-MeS-ADP (2-methylthioadenosine-5′-O-diphosphate) or epinephrine (adrenaline) could substitute for intermediate PAR4 activation. Finally, we found that the re-sensitization of PAR1 signalling-induced aggregation via PAR4 relied on PKC-mediated release of both ADP from dense granules and fibrinogen from α-granules. The present study elucidates further differences in human platelet PAR signalling regulation and provides evidence for a cross-talk in which PAR4 signalling counteracts mechanisms involved in PAR1 signalling down-regulation.


1987 ◽  
Author(s):  
C T Poll ◽  
J Westwick

Fura 2 is one of a recently-introduced family of Ca++ indicators with improved fluorescent properties compared to quin 2 (Grynkiewicz et al 1985). This study has examined the role of [Ca++]i in thrombin-induced dense granule release using prostacyclin-washed human platelets loaded with either thedense granule marker 14C-5HT (5HT) alone or with 5HT together with quin 2 ([quin2]i = 0.8mM) or fura 2 ([fura 2]i 20-30µM). In the presence of ImM extracellular calcium concentration ([Ca++]i) the [Ca++]e in quin 2 and fura 2 loaded platelets was 93±2 (n=10 experiments) and 133±0.3nM (n=12 experiments) respectively. In either quin 2 or fura 2 loaded platelets suspended in the presence of ImM [Ca++]e, thrombin (0.23-23.InM) promoted a rapid (in secs)concentration-dependent elevation of [Ca++]i from basal values to levels l-2µM, together with a parallel release of dense granules almost identical to that obtained with thrombin in non dye loaded platelets. In fura 2 loaded cells, removal of [Ca++]e inhibited the elevation of [Ca++]i induced by a sub-maximal concentration of thrombin (0.77nM) by 43+5% (n=4) but interestingly had no significant effect (p<0.05) on the rise in [Ca++]i elicited by low thrombin doses (0.231nM). Neither did lowering [Ca++]e inhibit the release of 5HT evoked by thrombin ( 0.231-23.InM) from either fura 2 loaded or non dye loaded platelets. In contrast, in quin 2 loaded platelets, removal of [Ca++]e inhibited the thrombin (0.231-23.InM) stimulated rise in [Ca++]i-by 90% and the 5HT release response to either low (0.231nM), sub-maximal (0.77nM) or maximal (23.InM) thrombin by 100% (n=4), 87+2°/o (n=6)and 2+l°/o (n=4) respectively. Fura 2 but not quin 2 loaded cells suspended in ImM [Ca++]e exhibited a Ca++ response to thrombin concentrations >2.31nM which could be separated into a rapid phasic component and a more sustained 'tonic' like component inhibitable by removal of [Ca++]e or by addition of ImM Ni++ . These data suggest the use of fura 2 rather than quin 2 for investigating stimulus response coupling in platelets, particularly when [Ca++]e is less than physiological. We thank the British Heart Foundation and Ciba-Geigy USA for financial support.


1979 ◽  
Vol 182 (2) ◽  
pp. 413-419 ◽  
Author(s):  
Holm Holmsen ◽  
Linda Robkin ◽  
H. James Day

1. Shape change, aggregation and secretion of dense-granule constituents in platelets differ in their dependence on cellular energy metabolism. The possibility that such a difference also exists between secretion of dense-granule constituents and acid hydrolases was investigated. 2. Human platelets were incubated with [14C]adenine in plasma, and then washed and resuspended in salt solutions. The effects of incubating the cells with antimycin A and 2-deoxyglucose on the concentrations of [14C]ATP, ADP, AMP, IMP and inosine plus hypoxanthine and on thrombin-induced secretion of ATP plus ADP and acid hydrolases were studied. The metabolic inhibitors only affected 14C-labelled nucleotides, whereas thrombin only liberated unlabelled ATP and ADP. 3. The extent of secretion decreased progressively with time during incubation with the metabolic inhibitors. At any time the secretion of acid hydrolases, β-N-acetylglucosaminidase, β-glucuronidase and β-galactosidase was inhibited to a greater extent than secretion of ATP plus ADP (dense-granule secretion). 4. Incubation with the metabolic inhibitors shifted the log (dose)–response relationship to higher thrombin concentrations, and with a greater shift for acid hydrolase secretion than for dense-granule secretion. 5. Antimycin, when present alone, caused a marked decrease in the rate of acid hydrolase secretion, but had no effect on dense-granule secretion. 6. These results further support the view that acid hydrolase secretion and dense-granule secretion are separate processes with different requirements for ATP energy. Acid hydrolase secretion, but not dense-granule secretion, appears to depend on a simultaneous rapid generation of ATP, which can be accomplished by oxidative, but not by glycolytic, ATP production.


2021 ◽  
Vol 5 (3) ◽  
pp. 674-686
Author(s):  
Tony G. Walsh ◽  
Yong Li ◽  
Christopher M. Williams ◽  
Elizabeth W. Aitken ◽  
Robert K. Andrews ◽  
...  

Abstract The exocyst is an octameric complex comprising 8 distinct protein subunits, exocyst complex components (EXOC) 1 to 8. It has an established role in tethering secretory vesicles to the plasma membrane, but its relevance to platelet granule secretion and function remains to be determined. Here, EXOC3 conditional knockout (KO) mice in the megakaryocyte/platelet lineage were generated to assess exocyst function in platelets. Significant defects in platelet aggregation, integrin activation, α-granule (P-selectin and platelet factor 4), dense granule, and lysosomal granule secretion were detected in EXOC3 KO platelets after treatment with a glycoprotein VI (GPVI)-selective agonist, collagen-related peptide (CRP). Except for P-selectin exposure, these defects were completely recovered by maximal CRP concentrations. GPVI surface levels were also significantly decreased by 14.5% in KO platelets, whereas defects in proximal GPVI signaling responses, Syk and LAT phosphorylation, and calcium mobilization were also detected, implying an indirect mechanism for these recoverable defects due to decreased surface GPVI. Paradoxically, dense granule secretion, integrin activation, and changes in surface expression of integrin αIIb (CD41) were significantly increased in KO platelets after protease-activated receptor 4 activation, but calcium responses were unaltered. Elevated integrin activation responses were completely suppressed with a P2Y12 receptor antagonist, suggesting enhanced dense granule secretion of adenosine 5′-diphosphate as a critical mediator of these responses. Finally, arterial thrombosis was significantly accelerated in KO mice, which also displayed improved hemostasis determined by reduced tail bleeding times. These findings reveal a regulatory role for the exocyst in controlling critical aspects of platelet function pertinent to thrombosis and hemostasis.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3528-3528
Author(s):  
Robert Flaumenhaft ◽  
James R. Dilks ◽  
Nataliya Rozenvayn ◽  
Rita A. Monahan-Earley ◽  
Dian Feng ◽  
...  

Abstract Platelet granule secretion is an essential component of normal arterial thrombus formation. Stimulation of platelets with strong agonists results in centralization of cytoplasmic organelles and loss of granules. These observations have lead to the supposition that cytoskeletal contraction facilitates granule secretion. Yet, the influence of the actin cytoskeleton in controlling membrane fusion events required for granule secretion remains largely unknown. Initial studies using electron microscopy revealed that the actin disrupting agents latrunculin A (4 μM) or cytochalasin E (4 μM) prevented pseudopod formation and granule centralization in platelets exposed to SFLLRN or PMA, but did not prevent degranulation. We next determined the effects of disruption of the actin cytoskeleton on α-granule secretion by monitoring P-selectin expression and β-thromboglobulin release. Incubation of platelets with either latrunculin A or cytochalasin E failed to stimulate α-granule secretion, but increased the rate of SFLLRN-induced α-granule secretion by 3.5-fold. Cytoskeletal disruption also augmented the degree of SFLLRN-induced α-granule secretion by 41±18% and reduced the amount of SFLLRN required to cause half-maximal stimulation by 2-fold. Incubation with latrunculin A stimulated α-granule secretion by the weak secretogues epinephrine or ADP by 7.6-fold and 5.4-fold, respectively. Cytoskeletal disruption also facilitated β-thromboglobulin release in response to SFLLRN, epinephrine, or ADP. In platelets permeabilized in the absence of ATP, exposure to 2 μM latrunculin A resulted in a 6.5- and 3.5-fold increase in α-granule release induced by Ca2+- or GTP-γ-S, respectively. Antibodies directed at a SNARE protein termed vesicle-associated fusion protein (VAMP) inhibited latrunculin A-dependent α-granule secretion. Thus, disruption of the actin cytoskeletal barrier by latrunculin A supports SNARE protein-dependent membrane fusion. Since actin acts as a barrier to α-granule secretion, we evaluated α-granules purified by subcellular fractionation for the presence of F-actin. Purified α-granules, but not phospholipid micelles, bound the F-actin probe FITC-phalloidin as determined by flow cytometry. FITC-phalloidin binding was inhibited in a dose-dependent manner by latrunculin A. These data indicated that α-granules are coated with F-actin that could serve a barrier function. We next evaluated the effects of cytoskeletal disruption on dense granule secretion by monitoring ADP/ATP release using a luciferin-luciferase based assay and by quantifying [3H]serotonin release. Cytoskeletal disruption by 4 μM latrunculin A failed to affect the degree of dense granule secretion from platelets stimulated by either SFLLRN, epinephrine, or ADP. Yet, 200 μM latrunculin A stimulated substantial dense granule release in the absence of agonist exposure and augmented SFLLRN-induced dense granule release by 2-fold. In contrast, 200 μM latrunculin A abolished SFLLRN-induced α-granule secretion. These observations indicate that the cytoskeleton differentially regulates α-granule and dense granule secretion. Our results also suggest that while some degree of actin polymerization is required for α-granule secretion, dense granule secretion is not dependent on actin polymerization.


Blood ◽  
2003 ◽  
Vol 101 (7) ◽  
pp. 2646-2651 ◽  
Author(s):  
Moon J. Cho ◽  
Junling Liu ◽  
Tamara I. Pestina ◽  
Shirley A. Steward ◽  
Dennis W. Thomas ◽  
...  

Collagen-induced activation of platelets in suspension leads to αIIbβ3-mediated outside-in signaling, granule release, thromboxane A2 (TxA2) production, and aggregation. Although much is known about collagen-induced platelet signaling, the roles of TxA2 production, adenosine diphosphate (ADP) and dense-granule secretion, and αIIbβ3-mediated outside-in signaling in this process are unclear. Here, we demonstrate that TxA2 and ADP are required for collagen-induced platelet activation in response to a low, but not a high, level of collagen and that αIIbβ3-mediated outside-in signaling is required, at least in part, for this TxA2 production and ADP secretion. A high level of collagen can activate platelets deficient in PLCγ2, Gαq, or TxA2 receptors, as well as platelets treated with a protein kinase C inhibitor, Ro31-8220. Thus, activation of αIIbβ3 in response to a high level of collagen does not require these signaling proteins. Furthermore, a high level of collagen can cause weak TxA2 and ADP-independent aggregation, but maximal aggregation induced by a high level of collagen requires TxA2 or secretion.


1996 ◽  
Vol 316 (1) ◽  
pp. 93-98 ◽  
Author(s):  
Belén RODRÍGUEZ-LIÑARES ◽  
Steve P. WATSON

Thrombopoietin (TPO), also known as the c-mpl ligand, stimulates rapid tyrosine phosphorylation of multiple proteins in human platelets including the Janus family kinases JAK2 and TYK2. On its own, TPO has no effect on platelet aggregation and dense-granule secretion but induces a general potentiation of these responses by other stimuli. The most dramatic effect is observed against threshold concentrations of agonists for aggregation. Shape change or weak reversible aggregation induced by low concentrations of thrombin, collagen and the thromboxane mimetic, U46619, are converted into irrreversible aggregation in the presence of TPO. A similar result is obtained in the presence of the ADP scavenger apyrase and cyclo-oxygenase inhibitor indomethacin. TPO also induces potentiation of dense-granule secretion measured through release of 5-hydroxy[3H]tryptamine. This effect is most striking against low concentrations of stimuli and is independent of aggregation as it is observed in the presence of chelation of extracellular Ca2+ with EGTA. TPO potentiates activation of phospholipase C and elevation of intracellular Ca2+, providing a molecular explanation for potentiation of functional responses. TPO may have an important physiological role in priming platelet activation in thrombocytopenia, an action that may help to compensate for the reduced platelet density.


Sign in / Sign up

Export Citation Format

Share Document