inositol phosphatase
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 7)

H-INDEX

44
(FIVE YEARS 1)

Author(s):  
Ian X. McLeod ◽  
Ruchi Saxena ◽  
Zachary Carico ◽  
You-Wen He

Autophagy, a highly conserved intracellular process, has been identified as a novel mechanism regulating T lymphocyte homeostasis. Herein, we demonstrate that both starvation- and T cell receptor-mediated autophagy induction requires class I phosphatidylinositol-3 kinases to produce PI(3)P. In contrast, common gamma chain cytokines are suppressors of autophagy despite their ability to activate the PI3K pathway. T cells lacking the PI3KI regulatory subunits, p85 and p55, were almost completely unable to activate TCR-mediated autophagy and had concurrent defects in PI(3)P production. Additionally, T lymphocytes upregulate polyinositol phosphatases in response to autophagic stimuli, and the activity of the inositol phosphatases Inpp4 and SHIP are required for TCR-mediated autophagy induction. Addition of exogenous PI(3,4)P2 can supplement cellular PI(3)P and accelerate the outcome of activation-induced autophagy. TCR-mediated autophagy also requires internalization of the TCR complex, suggesting that this kinase/phosphatase activity is localized in internalized vesicles. Finally, HIV-induced bystander CD4+ T cell autophagy is dependent upon PI3KI. Overall, our data elucidate an important pathway linking TCR activation to autophagy, via induction of PI3KI activity and inositol phosphatase upregulation to produce PI(3)P.


Bone Reports ◽  
2021 ◽  
Vol 14 ◽  
pp. 100795
Author(s):  
Fatemeh Safari ◽  
Jeremy Yeoh ◽  
Margaux Bringardner ◽  
Mark Siegrist ◽  
Silvia Dolder ◽  
...  

Author(s):  
Bart Appelhof ◽  
Matias Wagner ◽  
Julia Hoefele ◽  
Anja Heinze ◽  
Timo Roser ◽  
...  

Abstract Pontocerebellar hypoplasia (PCH) describes a group of rare heterogeneous neurodegenerative diseases with prenatal onset. Here we describe eight children with PCH from four unrelated families harboring the homozygous MINPP1 (NM_004897.4) variants; c.75_94del, p.(Leu27Argfs*39), c.851 C > A, p.(Ala284Asp), c.1210 C > T, p.(Arg404*), and c.992 T > G, p.(Ile331Ser). The homozygous p.(Leu27Argfs*39) change is predicted to result in a complete absence of MINPP1. The p.(Arg404*) would likely lead to a nonsense mediated decay, or alternatively, a loss of several secondary structure elements impairing protein folding. The missense p.(Ala284Asp) affects a buried, hydrophobic residue within the globular domain. The introduction of aspartic acid is energetically highly unfavorable and therefore predicted to cause a significant reduction in protein stability. The missense p.(Ile331Ser) affects the tight hydrophobic interactions of the isoleucine by the disruption of the polar side chain of serine, destabilizing the structure of MINPP1. The overlap of the above-mentioned genotypes and phenotypes is highly improbable by chance. MINPP1 is the only enzyme that hydrolyses inositol phosphates in the endoplasmic reticulum lumen and several studies support its role in stress induced apoptosis. The pathomechanism explaining the disease mechanism remains unknown, however several others genes of the inositol phosphatase metabolism (e.g., INPP5K, FIG4, INPP5E, ITPR1) are correlated with phenotypes of neurodevelopmental disorders. Taken together, we present MINPP1 as a novel autosomal recessive pontocerebellar hypoplasia gene.


2020 ◽  
Vol 117 (22) ◽  
pp. 12428-12434 ◽  
Author(s):  
Mian Cao ◽  
Daehun Park ◽  
Yumei Wu ◽  
Pietro De Camilli

Numerous genes whose mutations cause, or increase the risk of, Parkinson’s disease (PD) have been identified. An inactivating mutation (R258Q) in the Sac inositol phosphatase domain of synaptojanin 1 (SJ1/PARK20), a phosphoinositide phosphatase implicated in synaptic vesicle recycling, results in PD. The gene encoding Sac2/INPP5F, another Sac domain-containing protein, is located within a PD risk locus identified by genome-wide association studies. Knock-In mice carrying the SJ1 patient mutation (SJ1RQKI) exhibit PD features, while Sac2 knockout mice (Sac2KO) do not have obvious neurologic defects. We report a “synthetic” effect of the SJ1 mutation and the KO of Sac2 in mice. Most mice with both mutations died perinatally. The occasional survivors had stunted growth, died within 3 wk, and showed abnormalities of striatal dopaminergic nerve terminals at an earlier stage than SJ1RQKI mice. The abnormal accumulation of endocytic factors observed at synapses of cultured SJ1RQKI neurons was more severe in double-mutant neurons. Our results suggest that SJ1 and Sac2 have partially overlapping functions and are consistent with a potential role of Sac2 as a PD risk gene.


2020 ◽  
Author(s):  
Mian Cao ◽  
Daehun Park ◽  
Yumei Wu ◽  
Pietro De Camilli

AbstractMany genes whose mutations cause, or increase the risk of, Parkinson’s disease (PD) have been identified. An inactivating mutation (R258Q) in the Sac inositol phosphatase domain of synaptojanin 1 (SJ1/PARK20), a phosphoinositide phosphatase implicated in synaptic vesicle recycling, results in PD. The gene encoding Sac2/INPP5F, another Sac domain containing protein, was identified as a PD risk locus by GWAS. Knock-In mice carrying the SJ1 patient mutation (SJ1RQKI) exhibit PD features, while Sac2 knockout mice (Sac2KO) do not have obvious neurological defects. We report a “synthetic” effect of the SJ1 mutation and the KO of Sac2 in mice. Most mice with both mutations died perinatally. The occasional survivors had stunted growth, died within 3 weeks, and showed abnormalities of striatal dopaminergic nerve terminals at an earlier stage than SJ1RQKI mice. The abnormal accumulation of endocytic factors observed at synapses of cultured SJ1RQKI neurons was more severe in double mutant. Our results suggest that SJ1 and Sac2 have partially overlapping functions and are consistent with a potential role of Sac2 as a PD risk gene.


2019 ◽  
Vol 204 (2) ◽  
pp. 360-374 ◽  
Author(s):  
Simar Pal Singh ◽  
Marjolein J. W. de Bruijn ◽  
Catarina Velaso Gago da Graça ◽  
Odilia B. J. Corneth ◽  
Jasper Rip ◽  
...  

Biochemistry ◽  
2018 ◽  
Vol 58 (6) ◽  
pp. 534-545
Author(s):  
Tyler J. Florio ◽  
Ravi K. Lokareddy ◽  
Richard E. Gillilan ◽  
Gino Cingolani

2018 ◽  
Vol 36 (5-6) ◽  
pp. 213-231 ◽  
Author(s):  
Margaret L. Hibbs ◽  
April L. Raftery ◽  
Evelyn Tsantikos

2018 ◽  
Vol 11 (548) ◽  
pp. eaap8608 ◽  
Author(s):  
Bohumil Fafilek ◽  
Lukas Balek ◽  
Michaela Kunova Bosakova ◽  
Miroslav Varecha ◽  
Alexandru Nita ◽  
...  

Sustained activation of extracellular signal–regulated kinase (ERK) drives pathologies caused by mutations in fibroblast growth factor receptors (FGFRs). We previously identified the inositol phosphatase SHIP2 (also known as INPPL1) as an FGFR-interacting protein and a target of the tyrosine kinase activities of FGFR1, FGFR3, and FGFR4. We report that loss of SHIP2 converted FGF-mediated sustained ERK activation into a transient signal and rescued cell phenotypes triggered by pathologic FGFR-ERK signaling. Mutant forms of SHIP2 lacking phosphoinositide phosphatase activity still associated with FGFRs and did not prevent FGF-induced sustained ERK activation, demonstrating that the adaptor rather than the catalytic activity of SHIP2 was required. SHIP2 recruited Src family kinases to the FGFRs, which promoted FGFR-mediated phosphorylation and assembly of protein complexes that relayed signaling to ERK. SHIP2 interacted with FGFRs, was phosphorylated by active FGFRs, and promoted FGFR-ERK signaling at the level of phosphorylation of the adaptor FRS2 and recruitment of the tyrosine phosphatase PTPN11. Thus, SHIP2 is an essential component of canonical FGF-FGFR signal transduction and a potential therapeutic target in FGFR-related disorders.


Sign in / Sign up

Export Citation Format

Share Document