ADA-deficient SCID is associated with a specific microenvironment and bone phenotype characterized by RANKL/OPG imbalance and osteoblast insufficiency

Blood ◽  
2009 ◽  
Vol 114 (15) ◽  
pp. 3216-3226 ◽  
Author(s):  
Aisha V. Sauer ◽  
Emanuela Mrak ◽  
Raisa Jofra Hernandez ◽  
Elena Zacchi ◽  
Francesco Cavani ◽  
...  

Abstract Adenosine deaminase (ADA) deficiency is a disorder of the purine metabolism leading to combined immunodeficiency and systemic alterations, including skeletal abnormalities. We report that ADA deficiency in mice causes a specific bone phenotype characterized by alterations of structural properties and impaired mechanical competence. These alterations are the combined result of an imbalanced receptor activator of nuclear factor-κB ligand (RANKL)/osteoprotegerin axis, causing decreased osteoclastogenesis and an intrinsic defect of osteoblast function with subsequent low bone formation. In vitro, osteoblasts lacking ADA displayed an altered transcriptional profile and growth reduction. Furthermore, the bone marrow microenvironment of ADA-deficient mice showed a reduced capacity to support in vitro and in vivo hematopoiesis. Treatment of ADA-deficient neonatal mice with enzyme replacement therapy, bone marrow transplantation, or gene therapy resulted in full recovery of the altered bone parameters. Remarkably, untreated ADA–severe combined immunodeficiency patients showed a similar imbalance in RANKL/osteoprotegerin levels alongside severe growth retardation. Gene therapy with ADA-transduced hematopoietic stem cells increased serum RANKL levels and children's growth. Our results indicate that the ADA metabolism represents a crucial modulatory factor of bone cell activities and remodeling. The trials were registered at www.clinicaltrials.gov as #NCT00598481 and #NCT00599781.

Pharmaceutics ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 549
Author(s):  
Laura Garcia-Perez ◽  
Anita Ordas ◽  
Kirsten Canté-Barrett ◽  
Pauline Meij ◽  
Karin Pike-Overzet ◽  
...  

Recent clinical trials using patient’s own corrected hematopoietic stem cells (HSCs), such as for primary immunodeficiencies (Adenosine deaminase (ADA) deficiency, X-linked Severe Combined Immunodeficiency (SCID), X-linked chronic granulomatous disease (CGD), Wiskott–Aldrich Syndrome (WAS)), have yielded promising results in the clinic; endorsing gene therapy to become standard therapy for a number of diseases. However, the journey to achieve such a successful therapy is not easy, and several challenges have to be overcome. In this review, we will address several different challenges in the development of gene therapy for immune deficiencies using our own experience with Recombinase-activating gene 1 (RAG1) SCID as an example. We will discuss product development (targeting of the therapeutic cells and choice of a suitable vector and delivery method), the proof-of-concept (in vitro and in vivo efficacy, toxicology, and safety), and the final release steps to the clinic (scaling up, good manufacturing practice (GMP) procedures/protocols and regulatory hurdles).


Blood ◽  
1997 ◽  
Vol 89 (5) ◽  
pp. 1800-1810 ◽  
Author(s):  
Sergey Yurasov ◽  
Tobias R. Kollmann ◽  
Ana Kim ◽  
Christina A. Raker ◽  
Moshe Hachamovitch ◽  
...  

To develop an in vivo model wherein human hematopoiesis occurs, we transplanted severe combined immunodeficiency (SCID) mice with either human fetal bone marrow (HFBM) or human fetal liver (HFL). After transplantation of SCID mice with cultured HFBM (BM-SCID-hu mice) or HFL cells (Liv-SCID-hu mice), significant engraftment of the mouse bone marrow (BM) and population of the peripheral blood with human leukocytes was detected. Human colony-forming unit–granulocyte macrophage and burst forming unit-erythroid were detected in the BM of the BM-SCID-hu and Liv-SCID-hu mice up to 8 months after transplantation. When the HFBM or HFL cells were transduced with a retroviral vector before transplantation, integrated retroviral sequences were detected in human precursor cells present in the SCID mouse BM and in leukocytes circulating in the peripheral blood (PB) up to 7 months after transplantation. The PB of the BM-SCID-hu mice also became populated with human T cells after implantation with human thymic tissue, which provided a human microenvironment wherein human pre-T cells from the BM could mature. When the HFBM was retrovirally transduced before transplantation, integrated retrovirus was detected in sorted CD4+CD8+ double positive and CD4+ single positive cells from the thymic implant and CD4+ cells from the PB. Taken together, these data indicated that the BM of our BM-SCID-hu and Liv-SCID-hu mice became engrafted with retrovirally transduced human hematopoietic precursors that undergo the normal human hematopoietic program and populate the mouse PB with human cells containing integrated retroviral sequences. In addition to being a model for studying in vivo human hematopoiesis, these mice should also prove to be a useful model for investigating in vivo gene therapy using human stem/precursor cells.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 200-200
Author(s):  
Alessandro Aiuti ◽  
Ulrike Benninghoff ◽  
Barbara Cassani ◽  
Federica Cattaneo ◽  
Luciano Callegaro ◽  
...  

Abstract Severe combined immunodeficiency (SCID) due to adenosine deaminase (ADA) deficiency is a fatal congenital disorder of the immune system associated with systemic toxicity due to accumulation of purine metabolites. We previously showed that retroviral-mediated ADA gene transfer into autologous hematopoietic stem/progenitor cells (HSC) allowed restoration of immune and metabolic functions. We have now enrolled eight ADA-SCID children (age: 7–67 months) in our phase I/II gene therapy trial in which HSC are combined with low intensity conditioning with busulfan (total dose 4 mg/Kg i.v.). Previous treatment included haploidentical bone marrow transplant (n=3) or long-term (>1 year) enzyme replacement therapy (PEG-ADA) (n=4) associated with insufficient immune reconstitution or severe autoimmunity. In the latter case, PEG-ADA was discontinued to favour the growth advantage for gene corrected cells. The patients received a median dose of 8.8x106/Kg bone marrow CD34+ cells (range 0.9–10.8), containing on average 26.2±9.6% transduced CFU-C. Five patients experienced ANC <0.5x109/L, which was extended beyond day +30 in two patients. With a median follow up of 3.1 years (range 0.4–5.9), no adverse events related to gene transfer have been observed. Long-term engraftment of transduced HSC was demonstrated by stable multilineage marking, persisting more than 5 years from gene therapy. The average proportion of transduced cells in the peripheral blood at one year post-gene therapy (n=6) was 5% for granulocytes, 95% for T cells, 56% for B cells and 62% for NK cells. Comparison of the insertion sites retrieved ex vivo from patients with those identified in pre-transplant transduced CD34+ cells showed no skewing in the profile of genome distributions or in the gene families hit by the vector, and no clonal expansion. In the six children with a follow-up >1 year after gene therapy, we observed a progressive increase in lymphocyte counts which was sustained over time (median at 1.5 years 1.6x109/L), polyclonal thymopoiesis and normalization of T-cell functions in vitro. Serum Ig levels improved and evidence of antigen-specific antibodies was obtained, leading to IVIG discontinuation in five patients. All the children are currently healthy and thriving, and none of them showed severe infections. Sustained ADA activity in lymphocytes and RBC resulted in a dramatic reduction of RBC purine toxic metabolites (dAXP<30 nmoles/ml in 5 patients) and amelioration of children’s growth and development. In summary, these data confirm that gene therapy is safe and efficacious in correcting both the immune and metabolic defect in ADA-SCID, with proven clinical benefit.


Blood ◽  
2012 ◽  
Vol 120 (18) ◽  
pp. 3635-3646 ◽  
Author(s):  
Fabio Candotti ◽  
Kit L. Shaw ◽  
Linda Muul ◽  
Denise Carbonaro ◽  
Robert Sokolic ◽  
...  

AbstractWe conducted a gene therapy trial in 10 patients with adenosine deaminase (ADA)–deficient severe combined immunodeficiency using 2 slightly different retroviral vectors for the transduction of patients' bone marrow CD34+ cells. Four subjects were treated without pretransplantation cytoreduction and remained on ADA enzyme-replacement therapy (ERT) throughout the procedure. Only transient (months), low-level (< 0.01%) gene marking was observed in PBMCs of 2 older subjects (15 and 20 years of age), whereas some gene marking of PBMC has persisted for the past 9 years in 2 younger subjects (4 and 6 years). Six additional subjects were treated using the same gene transfer protocol, but after withdrawal of ERT and administration of low-dose busulfan (65-90 mg/m2). Three of these remain well, off ERT (5, 4, and 3 years postprocedure), with gene marking in PBMC of 1%-10%, and ADA enzyme expression in PBMC near or in the normal range. Two subjects were restarted on ERT because of poor gene marking and immune recovery, and one had a subsequent allogeneic hematopoietic stem cell transplantation. These studies directly demonstrate the importance of providing nonmyeloablative pretransplantation conditioning to achieve therapeutic benefits with gene therapy for ADA-deficient severe combined immunodeficiency.


Blood ◽  
1999 ◽  
Vol 94 (9) ◽  
pp. 3027-3036 ◽  
Author(s):  
Mindy Lo ◽  
Michael L. Bloom ◽  
Kazunori Imada ◽  
Maria Berg ◽  
Julie M. Bollenbacher ◽  
...  

X-linked severe combined immunodeficiency (XSCID) is a life-threatening syndrome in which both cellular and humoral immunity are profoundly compromised. This disease results from mutations in theIL2RG gene, which encodes the common cytokine receptor γ chain, γc. Previously, we generated γc-deficient mice as a murine model of XSCID. We have now used lethally irradiated γc-deficient mice to evaluate a gene therapeutic approach for treatment of this disease. Transfer of the human γc gene to repopulating hematopoietic stem cells using an ecotropic retrovirus resulted in an increase in T cells, B cells, natural killer (NK) cells, and intestinal intraepithelial lymphocytes, as well as normalization of the CD4:CD8 T-cell ratio and of serum Ig levels. In addition, the restored cells could proliferate in response to interleukin-2 (IL-2). Thus, our results provide added support that gene therapy is a feasible therapeutic strategy for XSCID. Moreover, because we used a vector directing expression of human γc to correct a defect in γc-deficient mice, these data also indicate that human γc can cooperate with the distinctive cytokine receptor chains such as IL-2Rβ and IL-7R to mediate responses to murine cytokines in vivo.


Blood ◽  
1999 ◽  
Vol 94 (9) ◽  
pp. 3027-3036 ◽  
Author(s):  
Mindy Lo ◽  
Michael L. Bloom ◽  
Kazunori Imada ◽  
Maria Berg ◽  
Julie M. Bollenbacher ◽  
...  

Abstract X-linked severe combined immunodeficiency (XSCID) is a life-threatening syndrome in which both cellular and humoral immunity are profoundly compromised. This disease results from mutations in theIL2RG gene, which encodes the common cytokine receptor γ chain, γc. Previously, we generated γc-deficient mice as a murine model of XSCID. We have now used lethally irradiated γc-deficient mice to evaluate a gene therapeutic approach for treatment of this disease. Transfer of the human γc gene to repopulating hematopoietic stem cells using an ecotropic retrovirus resulted in an increase in T cells, B cells, natural killer (NK) cells, and intestinal intraepithelial lymphocytes, as well as normalization of the CD4:CD8 T-cell ratio and of serum Ig levels. In addition, the restored cells could proliferate in response to interleukin-2 (IL-2). Thus, our results provide added support that gene therapy is a feasible therapeutic strategy for XSCID. Moreover, because we used a vector directing expression of human γc to correct a defect in γc-deficient mice, these data also indicate that human γc can cooperate with the distinctive cytokine receptor chains such as IL-2Rβ and IL-7R to mediate responses to murine cytokines in vivo.


Blood ◽  
1997 ◽  
Vol 89 (5) ◽  
pp. 1800-1810 ◽  
Author(s):  
Sergey Yurasov ◽  
Tobias R. Kollmann ◽  
Ana Kim ◽  
Christina A. Raker ◽  
Moshe Hachamovitch ◽  
...  

Abstract To develop an in vivo model wherein human hematopoiesis occurs, we transplanted severe combined immunodeficiency (SCID) mice with either human fetal bone marrow (HFBM) or human fetal liver (HFL). After transplantation of SCID mice with cultured HFBM (BM-SCID-hu mice) or HFL cells (Liv-SCID-hu mice), significant engraftment of the mouse bone marrow (BM) and population of the peripheral blood with human leukocytes was detected. Human colony-forming unit–granulocyte macrophage and burst forming unit-erythroid were detected in the BM of the BM-SCID-hu and Liv-SCID-hu mice up to 8 months after transplantation. When the HFBM or HFL cells were transduced with a retroviral vector before transplantation, integrated retroviral sequences were detected in human precursor cells present in the SCID mouse BM and in leukocytes circulating in the peripheral blood (PB) up to 7 months after transplantation. The PB of the BM-SCID-hu mice also became populated with human T cells after implantation with human thymic tissue, which provided a human microenvironment wherein human pre-T cells from the BM could mature. When the HFBM was retrovirally transduced before transplantation, integrated retrovirus was detected in sorted CD4+CD8+ double positive and CD4+ single positive cells from the thymic implant and CD4+ cells from the PB. Taken together, these data indicated that the BM of our BM-SCID-hu and Liv-SCID-hu mice became engrafted with retrovirally transduced human hematopoietic precursors that undergo the normal human hematopoietic program and populate the mouse PB with human cells containing integrated retroviral sequences. In addition to being a model for studying in vivo human hematopoiesis, these mice should also prove to be a useful model for investigating in vivo gene therapy using human stem/precursor cells.


Blood ◽  
2006 ◽  
Vol 107 (8) ◽  
pp. 3091-3097 ◽  
Author(s):  
Suk See Ting–De Ravin ◽  
Douglas R. Kennedy ◽  
Nora Naumann ◽  
Jeffrey S. Kennedy ◽  
Uimook Choi ◽  
...  

AbstractX-linked severe combined immunodeficiency (XSCID) is characterized by profound immunodeficiency and early mortality, the only potential cure being hematopoietic stem cell (HSC) transplantation or gene therapy. Current clinical gene therapy protocols targeting HSCs are based upon ex vivo gene transfer, potentially limited by the adequacy of HSC harvest, transduction efficiencies of repopulating HSCs, and the potential loss of their engraftment potential during ex vivo culture. We demonstrate an important proof of principle by showing achievement of durable immune reconstitution in XSCID dogs following intravenous injection of concentrated RD114-pseudotyped retrovirus vector encoding the corrective gene, the interleukin-2 receptor γ chain (γc). In 3 of 4 dogs treated, normalization of numbers and function of T cells were observed. Two long-term–surviving animals (16 and 18 months) showed significant marking of B lymphocytes and myeloid cells, normalization of IgG levels, and protective humoral immune response to immunization. There were no adverse effects from in vivo gene therapy, and in one dog that reached sexual maturity, sparing of gonadal tissue from gene transfer was demonstrated. This is the first demonstration that in vivo gene therapy targeting HSCs can restore both cellular and humoral immunity in a large-animal model of a fatal immunodeficiency.


Blood ◽  
1997 ◽  
Vol 89 (11) ◽  
pp. 3919-3924 ◽  
Author(s):  
Jean C.Y. Wang ◽  
Monica Doedens ◽  
John E. Dick

Abstract We have previously reported the development of in vivo functional assays for primitive human hematopoietic cells based on their ability to repopulate the bone marrow (BM) of severe combined immunodeficient (SCID) and nonobese diabetic/SCID (NOD/SCID) mice following intravenous transplantation. Accumulated data from gene marking and cell purification experiments indicate that the engrafting cells (defined as SCID-repopulating cells or SRC) are biologically distinct from and more primitive than most cells that can be assayed in vitro. Here we demonstrate through limiting dilution analysis that the NOD/SCID xenotransplant model provides a quantitative assay for SRC. Using this assay, the frequency of SRC in cord blood (CB) was found to be 1 in 9.3 × 105 cells. This was significantly higher than the frequency of 1 SRC in 3.0 × 106 adult BM cells or 1 in 6.0 × 106 mobilized peripheral blood (PB) cells from normal donors. Mice transplanted with limiting numbers of SRC were engrafted with both lymphoid and multilineage myeloid human cells. This functional assay is currently the only available method for quantitative analysis of human hematopoietic cells with repopulating capacity. Both CB and mobilized PB are increasingly being used as alternative sources of hematopoietic stem cells in allogeneic transplantation. Thus, the findings reported here will have important clinical as well as biologic implications.


Sign in / Sign up

Export Citation Format

Share Document