The AC133+CD38−, but not the rhodamine-low, phenotype tracks LTC-IC and SRC function in human cord blood ex vivo expansion cultures

Blood ◽  
2010 ◽  
Vol 115 (2) ◽  
pp. 257-260 ◽  
Author(s):  
Caryn Y. Ito ◽  
Daniel C. Kirouac ◽  
Gerard J. Madlambayan ◽  
Mei Yu ◽  
Ian Rogers ◽  
...  

Abstract Phenotypic markers associated with human hematopoietic stem cells (HSCs) were developed and validated using uncultured cells. Because phenotype and function can be dissociated during culture, better markers to prospectively track and isolate HSCs in ex vivo cultures could be instrumental in advancing HSC-based therapies. Using an expansion system previously shown to increase hematopoietic progenitors and SCID-repopulating cells (SRCs), we demonstrated that the rhodamine-low phenotype was lost, whereas AC133 expression was retained throughout culture. Furthermore, the AC133+CD38− subpopulation was significantly enriched in long-term culture-initiating cells (LTC-IC) and SRCs after culture. Preculture and postculture analysis of total nucleated cell and LTC-IC number, and limiting dilution analysis in NOD/SCID mice, showed a 43-fold expansion of the AC133+CD38− subpopulation that corresponded to a 7.3-fold and 4.4-fold expansion of LTC-ICs and SRCs in this subpopulation, respectively. Thus, AC133+CD38− is an improved marker that tracks and enriches for LTC-IC and SRC in ex vivo cultures.

Blood ◽  
2002 ◽  
Vol 99 (9) ◽  
pp. 3454-3457 ◽  
Author(s):  
Hanno Glimm ◽  
Patrick Tang ◽  
Ian Clark-Lewis ◽  
Christof von Kalle ◽  
Connie Eaves

Abstract Ex vivo proliferation of hematopoietic stem cells (HSCs) is important for cellular and gene therapy but is limited by the observation that HSCs do not engraft as they transit S/G2/M. Recently identified candidate inhibitors of human HSC cycling are transforming growth factor-β1(TGF-β1) and stroma-derived factor–1 (SDF-1). To determine the ability of these factors to alter the transplantability of human HSCs proliferating in vitro, lin− cord blood cells were first cultured for 96 hours in serum-free medium containing Flt3 ligand, Steel factor, interleukin-3, interleukin-6, and granulocyte colony-stimulating factor. These cells were then transferred to medium containing Steel factor and thrombopoietin with or without SDF-1 and/or TGF-β1 for 48 hours. Exposure to SDF-1 but not TGF-β1 significantly increased (> 2-fold) the recovery of HSCs able to repopulate nonobese diabetic/severe combined immunodeficiency mice. These results suggest new strategies for improving the engraftment activity of HSCs stimulated to proliferate ex vivo.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1329-1329
Author(s):  
Aleksandra Rizo ◽  
Edo Vellenga ◽  
Gerald de Haan ◽  
Jan Jacob Schuringa

Abstract Hematopoietic stem cells (HSCs) are able to self-renew and differentiate into cells of all hematopoietic lineages. Because of this unique property, they are used for HSC transplantations and could serve as a potential source of cells for future gene therapy. However, the difficulty to expand or even maintain HSCs ex vivo has been a major limitation for their clinical applications. Here, we report that overexpression of the Polycomb group gene Bmi-1 in human cord blood-derived HSCs can potentially overcome this limitation as stem/progenitor cells could be maintained in liquid culture conditions for over 16 weeks. In mouse studies, it has been reported that increased expression of Bmi-1 promotes HSC self-renewal, while loss-of-function analysis revealed that Bmi-1 is implicated in maintenance of the hematopoietic stem cells (HSC). In a clinically more relevant model, using human cord blood CD34+ cells, we have established a long-term ex-vivo expansion method by stable overexpression of the Bmi-1 gene. Bmi-1-transduced cells proliferated in liquid cultures supplemented with 20% serum, SCF, TPO, Flt3 ligand, IL3 and IL6 for more than 4 months, with a cumulative cell expansion of more then 2×105-fold. The cells remained cytokine-dependent, while about 4% continued to express CD34 for over 20 weeks of culture. The cultured cells retained their progenitor activity throughout the long-term expansion protocol. The colony-forming units (CFUs) were present at a frequency of ~ 30 colonies per 10 000 cells 16 weeks after culture and consisted of CFU-GM, BFU-E and high numbers of CFU-GEMM type progenitors. After plating the transduced cells in co-cultures with the stromal cell line MS5, Bmi-1 cells showed a proliferative advantage as compared to control cells, with a cumulative cell expansion of 44,9 fold. The non-adherent cells from the co-cultures gave rise to higher numbers of colonies of all types (~70 colonies/10.000 cells) after 4 weeks of co-culture. The LTC-IC frequencies were 5-fold higher in the Bmi-1-transduced cells compared to control cells (1/361 v.s. 1/2077, respectively). Further studies will be focused on in-vivo transplantation of the long-term cultured cells in NOD/SCID mice to test their repopulating capacity. In conclusion, our data implicate Bmi-1 as an important modulator of human HSC self-renewal and suggest that it can be a potential target for therapeutic manipulation of human HSCs.


2015 ◽  
Vol 43 (9) ◽  
pp. S79 ◽  
Author(s):  
Yoshikazu Matsuoka ◽  
Keisuke Sumide ◽  
Hiroshi Kawamura ◽  
Ryusuke Nakatsuka ◽  
Tatsuya Fujioka ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 816-816
Author(s):  
Faiyaz Notta ◽  
Sergei Doulatov ◽  
John E. Dick

Abstract Abstract 816 A fundamental tenet that has guided our insight into the biology of hematopoietic stem cells (HSCs) over the past 50 years is the principle that an HSC can only be assayed by functional repopulation of an irradiated host1. In its strictest definition, only a HSC can provide long-term reconstitution of all the major lineages following single cell transplantation. However, the existing strategies for human HSC isolation lack quantitation and do not submit to this rigorous standard, thus precluding further biological analysis. Here, we report the prospective and quantitative analysis of human cord blood (CB) HSCs transplanted into female NOD/SCID/IL-2Rgcnull mice. We identify integrin a6 (CD49f) as a novel marker of cord blood (CB) HSCs and report that single Lin-CD34+CD38-CD90+CD45RA-RholoCD49fhi cells can reconstitute myeloid, B-, and T-cell lineages for 18 weeks. 5 of 29 mice transplanted with single cells gave rise to human cells indicating that approximately 20% of cells in this fraction are HSCs. This advance finally enables utilization of near-homogeneous populations of human HSCs to gain insight into their biology and to harness them for stem cell-based therapeutics. Disclosures: No relevant conflicts of interest to declare.


2015 ◽  
Vol 5 (3) ◽  
pp. e290-e290 ◽  
Author(s):  
Y Matsuoka ◽  
K Sumide ◽  
H Kawamura ◽  
R Nakatsuka ◽  
T Fujioka ◽  
...  

Blood ◽  
2020 ◽  
Vol 136 (21) ◽  
pp. 2410-2415 ◽  
Author(s):  
Peng Hua ◽  
Joanna Hester ◽  
George Adigbli ◽  
Rong Li ◽  
Bethan Psaila ◽  
...  

Abstract Although cytokine-mediated expansion of human hematopoietic stem cells (HSCs) can result in high yields of hematopoietic progenitor cells, this generally occurs at the expense of reduced bone marrow HSC repopulating ability, thereby limiting potential therapeutic applications. Because bromodomain-containing proteins (BCPs) have been demonstrated to regulate mouse HSC self-renewal and stemness, we screened small molecules targeting various BCPs as potential agents for ex vivo expansion of human HSCs. Of 10 compounds tested, only the bromodomain and extra-terminal motif inhibitor CPI203 enhanced the expansion of human cord blood HSCs without losing cell viability in vitro. The expanded cells also demonstrated improved engraftment and repopulation in serial transplantation assays. Transcriptomic and functional studies showed that the expansion of long-term repopulating HSCs was accompanied by synchronized expansion and maturation of megakaryocytes consistent with CPI203-mediated reprogramming of cord blood hematopoietic stem and progenitor cells. This approach may therefore prove beneficial for ex vivo gene editing, for enhanced platelet production, and for the improved usage of cord blood for transplantation research and therapy.


Sign in / Sign up

Export Citation Format

Share Document