scholarly journals Common VWF exon 28 polymorphisms in African Americans affecting the VWF activity assay by ristocetin cofactor

Blood ◽  
2010 ◽  
Vol 116 (2) ◽  
pp. 280-286 ◽  
Author(s):  
Veronica H. Flood ◽  
Joan Cox Gill ◽  
Patricia A. Morateck ◽  
Pamela A. Christopherson ◽  
Kenneth D. Friedman ◽  
...  

Abstract The diagnosis of von Willebrand disease relies on abnormalities in specific tests of von Willebrand factor (VWF), including VWF antigen (VWF:Ag) and VWF ristocetin cofactor activity (VWF:RCo). When examining healthy controls enrolled in the T. S. Zimmerman Program for the Molecular and Clinical Biology of von Willebrand disease, we, like others, found a lower mean VWF:RCo compared with VWF:Ag in African American controls and therefore sought a genetic cause for these differences. For the African American controls, the presence of 3 exon 28 single nucleotide polymorphisms (SNPs), I1380V, N1435S, and D1472H, was associated with a significantly lower VWF:RCo/VWF:Ag ratio, whereas the presence of D1472H alone was associated with a decreased ratio in both African American and Caucasian controls. Multivariate analysis comparing race, SNP status, and VWF:RCo/VWF:Ag ratio confirmed that only the presence of D1472H was significant. No difference was seen in VWF binding to collagen, regardless of SNP status. Similarly, no difference in activity was seen using a GPIb complex-binding assay that is independent of ristocetin. Because the VWF:RCo assay depends on ristocetin binding to VWF, mutations (and polymorphisms) in VWF may affect the measurement of “VWF activity” by this assay and may not reflect a functional defect or true hemorrhagic risk.

Blood ◽  
2011 ◽  
Vol 117 (19) ◽  
pp. 5224-5230 ◽  
Author(s):  
Marco Campos ◽  
Wei Sun ◽  
Fuli Yu ◽  
Maja Barbalic ◽  
Weihong Tang ◽  
...  

Abstractvon Willebrand factor (VWF) is an essential component of hemostasis and has been implicated in thrombosis. Multimer size and the amount of circulating VWF are known to impact hemostatic function. We associated 78 VWF single nucleotide polymorphisms (SNPs) and haplotypes constructed from those SNPs with VWF antigen level in 7856 subjects of European descent. Among the nongenomic factors, age and body mass index contributed 4.8% and 1.6% of VWF variation, respectively. The SNP rs514659 (tags O blood type) contributed 15.4% of the variance. Among the VWF SNPs, we identified 18 SNPs that are associated with levels of VWF. The correlative SNPs are either intronic (89%) or silent exonic (11%). Although SNPs examined are distributed throughout the entire VWF gene without apparent cluster, all the positive SNPs are located in a 50-kb region. Exons in this region encode for VWF D2, D′, and D3 domains that are known to regulate VWF multimerization and storage. Mutations in the D3 domain are also associated with von Willebrand disease. Fifteen of these 18 correlative SNPs are in 2 distinct haplotype blocks. In summary, we identified a cluster of intronic VWF SNPs that associate with plasma levels of VWF, individually or additively, in a large cohort of healthy subjects.


2017 ◽  
Vol 137 (2) ◽  
pp. 89-92 ◽  
Author(s):  
David McLaughlin ◽  
Ron Kerr

Type 2B von Willebrand disease is a rare bleeding condition resulting in thrombocytopenia and a reduction in large VWF multimers. It usually has an autosomal dominant pattern of inheritance. We report the management of a patient with type 2B von Willebrand disease, whose diagnosis was confirmed by demonstration of a R1306W mutation, through her first pregnancy. The patient's von Willebrand factor (VWF) antigen and VWF ristocetin cofactor levels rose throughout pregnancy, with an associated drop in the platelet count. The patient was successfully managed through labour to a surgical delivery with VWF concentrate, platelet transfusions and tranexamic acid. The patient delivered a male baby who was found to have inherited type 2B von Willebrand disease and had a significant cephalhaematoma at delivery. The baby was managed with VWF concentrate and platelet transfusions and made a full recovery. There is a lack of evidence to guide the best management of pregnant patients with type 2B von Willebrand disease. We adopted a pragmatic management plan, in keeping with other published case reports. To the best of our knowledge, this is the first case report in which the child was found to have inherited type 2B von Willebrand disease and encountered bleeding problems, making this case unique amongst the published literature.


Blood ◽  
1979 ◽  
Vol 54 (3) ◽  
pp. 600-606 ◽  
Author(s):  
D Meyer ◽  
D Frommel ◽  
MJ Larrieu ◽  
TS Zimmerman

Abstract A previously healthy elderly man with mucocutaneous bleeding was found to have a benign monoclonal IgG gammapathy associated with criteria for severe von Willebrand disease (Factor VIII procoagulant activity, Factor-VIII-related antigen, and ristocetin cofactor activity, less than 10% of normal). Associated qualitative abnormalities of factor VIII/von Willebrand factor were demonstrated by radiocrossed immunoelectrophoresis and immunoradiometric assay. The late clinical onset and negative family history are in favor of an acquired form of vWD. The monoclonal gammapathy and abnormalities of factor VIII/von Willebrand factor have been stable over a 10-yr period. No inhibitor to Factor VIII procoagulant activity, ristocetin cofactor activity, or Factor-VIII-related antigen could be demonstrated. Following transfusion of cryoprecipitate (with a normal cross immunoelectrophoretic pattern), there was a rapid removal of the large forms of Factor.-VIII-related antigen, paralleled by a decay of ristocetin cofactor activity. The transfusion study of this patient with acquired von Willebrand disease type II (variant of von Willebrand disease) serves to emphasize the relationship between polydispersity of Factor VIII/von Willebrand Factor and functional heterogeneity.


Blood ◽  
1999 ◽  
Vol 93 (12) ◽  
pp. 4277-4283 ◽  
Author(s):  
Angela M. Keightley ◽  
Y. Miu Lam ◽  
Jolene N. Brady ◽  
Cherie L. Cameron ◽  
David Lillicrap

Abstract Both genetic and environmental factors contribute to the normal population variability of plasma von Willebrand Factor (vWF) levels, however, regulatory mechanisms at the vWF gene locus itself have not yet been identified. We have investigated the association between polymorphic variation in the 5′-regulatory region of the vWF gene and levels of plasma vWF:Ag in a study of 261 group O blood donors. Three novel single nucleotide polymorphisms (SNPs) were identified in the vWF promoter: C/T at -1234, A/G at -1185, and G/A at -1051. These SNPs had identical allele frequencies of 0.36 for the -1234C, -1185A, and -1051G alleles and 0.64 for the -1234T, -1185G, and -1051A alleles and were in strong linkage disequilibrium. In fact, these polymorphisms segregated as two distinct haplotypes: -1234C/-1185A/-1051G (haplotype 1) and -1234T/-1185G/-1051A (haplotype 2) with 12.6% of subjects homozygous for haplotype 1, 40.6% homozygous for haplotype 2, and 42.5% of subjects heterozygous for both haplotypes. Only 4.3% of individuals had other genotypes. A significant association between promoter genotype and level of plasma vWF:Ag was established (analysis of covariance [ANCOVA], P = .008; Kruskal-Wallis test,P = .006); individuals with the CC/AA/GG genotype had the highest mean vWF:Ag levels (0.962 U/mL), intermediate values of vWF:Ag (0.867 U/mL) were observed for heterozygotes (CT/AG/GA), and those with the TT/GG/AA genotype had the lowest mean plasma vWF:Ag levels (0.776 U/mL). Interestingly, when the sample was subgrouped according to age, the significant association between promoter genotype and plasma vWF:Ag level was accentuated in subjects > 40 years of age (analysis of variance [ANOVA], P = .003; Kruskal-Wallis test, P= .001), but was not maintained for subjects ≤ 40 years of age (ANOVA, P > .4; Kruskal-Wallis test, P > .4). In the former subgroup, mean levels of plasma vWF:Ag for subjects with the CC/AA/GG, CT/AG/GA, and TT/GG/AA genotypes were 1.075, 0.954, and 0.794 U/mL, respectively. By searching a transcription factor binding site profile database, these polymorphic sequences were predicted to interact with several transcription factors expressed in endothelial cells, including Sp1, GATA-2, c-Ets, and NFκB. Furthermore, the binding sites at the -1234 and -1051 SNPs appeared to indicate allelic preferences for some of these proteins. Electrophoretic mobility shift assays (EMSAs) performed with recombinant human NFκB p50 showed preferential binding of the -1234T allele (confirmed by supershift EMSAs), and EMSAs using bovine aortic endothelial cell (BAEC) nuclear extracts produced specific binding of a nuclear protein to the -1051A allele, but not the -1051G allele. These findings suggest that circulating levels of vWF:Ag may be determined, at least in part, by polymorphic variation in the promoter region of the vWF gene, and that this association may be mediated by differential binding of nuclear proteins involved in the regulation of vWF gene expression.


Blood ◽  
1992 ◽  
Vol 79 (12) ◽  
pp. 3130-3137 ◽  
Author(s):  
PM Mannucci ◽  
PM Tenconi ◽  
G Castaman ◽  
F Rodeghiero

Abstract Until recently, cryoprecipitate has been the treatment of choice in patients with severe von Willebrand disease (vWD) because it can transiently correct low plasma levels of factor VIII coagulant activity (FVIII:C) and shorten or normalize the prolonged bleeding time (BT), the two laboratory hallmarks of the disease. However, cryoprecipitate may still transmit blood-borne viruses, whereas the development of virucidal methods have rendered plasma concentrates containing FVIII:C and von Willebrand factor (vWF) safer. To establish their potential usefulness in the treatment of vWD, we compared the effect of four virus-inactivated concentrates on FVII:C and vWF plasma levels and the BT (template method) in 10 patients with severe vWD using a crossover randomized design. The concentrates were an intermediate-purity, pasteurized FVIII-vWF concentrate; an intermediate-purity, dry-heated FVIII-vWF concentrate; a solvent/detergent-treated vWF concentrate, containing little FVIII; and a high-purity solvent/detergent-treated FVIII-vWF concentrate. All concentrates were equally effective in attaining normal and sustained levels of FVIII:C postinfusion, although peak levels were more delayed after the vWF concentrate. The effect of concentrates on the BT, however, was less uniform and satisfactory. The pasteurized FVIII-vWF concentrate transiently corrected, completely or partially, the BT in 8 of 10 patients, the dry-heated and solvent/detergent FVIII/vWF concentrates in five, whereas in no patient did the vWF concentrate correct the BT according to the criteria used in this study. These effects on the BT were not related to the plasma levels of ristocetin cofactor activity-attained postinfusion (100 U/dL or more in the majority of patients) or to the multimeric structure of vWF in concentrates (defective in larger multimers in all cases). In conclusion, even though virus-inactivated concentrates can be used to increase FVIII:C levels in patients with severe vWD, none of the concentrates studied by us consistently normalizes the BT in a sustained fashion.


Blood ◽  
1991 ◽  
Vol 77 (9) ◽  
pp. 1937-1941 ◽  
Author(s):  
C Gaucher ◽  
S Jorieux ◽  
B Mercier ◽  
D Oufkir ◽  
C Mazurier

Abstract We previously reported a functional defect of von Willebrand factor (vWF) in a new variant of von Willebrand disease (vWD) tentatively named vWD “Normandy.” The present work has attempted to characterize the molecular abnormality of this vWF that fails to bind factor VIII (FVIII). The immunopurified vWF from normal and patient's plasma were digested by trypsin and the resulting peptides were compared. The electrophoresis of ““vWF Normandy” showed a shift in the band corresponding to a polypeptide from amino acid 1 to 272. Consequently, we performed the molecular analysis of the portion of the vWF gene of this patient encoding this amino acid sequence. Exons 18–24 were amplified by the use of polymerase chain reaction and their nucleotide sequences corresponding to 1.8 kb were determined. Our analysis showed a point mutation C to T at codon 791, resulting in the substitution of Methionine for Threonine at position 28 of the mature vWF subunit. Because this nucleotide substitution destroyed a Mae II restriction site, this mutation was conveniently sought in various individual DNAs. The patterns obtained were consistent with the homozygous and heterozygous state of this mutation in the patient and in her son, respectively, and with its absence in 28 normal individuals. We conclude that Threonine at position 28 in plasma vWF may be crucial for the conformation and FVIII-binding capacity of its cystine-rich N- terminal domain.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 239-239
Author(s):  
Kenneth D Friedman ◽  
Daniel B. Bellissimo ◽  
Pamela A. Christopherson ◽  
Veronica H Flood ◽  
Joan Cox Gill ◽  
...  

Abstract Abstract 239 Von Willebrand disease (VWD) is a common hereditary bleeding disorder caused by reduced concentration or abnormal structure/function of von Willebrand Factor (VWF). Most published studies of normal VWF have been carried out in European or North American subjects without regard to racial differences. In the process of studying healthy controls in the Zimmerman Program for the Molecular and Clinical Biology of VWD (ZPMCB-VWD), we identified a common polymorphism (D1472H) in the VWF A1-domain in African Americans that affects the measurement of VWF function by ristocetin cofactor (VWF:RCo) but does not appear associated with increased bleeding risk. We therefore explored whether other polymorphisms or mutations were identified more frequently in African Americans. VWF sequencing was performed on 191 healthy controls including 66 that were self-identified as African American. European Bleeding Score was obtained and normal in all healthy subjects. Among the African Americans, 9 individuals were heterozygous for the reported type 2N H817Q mutation and one was homozygous. Factor VIII binding to VWF (VWF:F8B) was determined with a standard FVIII binding assay using the subject's plasma VWF and recombinant FVIII. The VWF:F8B was significantly reduced in H817Q heterozygotes when compared to 10 healthy study subjects without the H817Q mutation (65 ± 11 versus 108 ± 11, p=0.003). The VWF:F8B was further reduced to 37 using the plasma VWF from the homozygous H817Q subject. However, the observed VWF:F8B in these individuals with H817Q are still considerably higher that that observed in patients enrolled in ZPMCB-VWD that are either homozygous or compound heterozygous with the common R854Q type 2N VWD (VWF:F8B < 13). Of the 116 self-identified Caucasian healthy subjects, none had the H817Q mutation, but 3 were heterozygous for the R854Q mutation; their mean plasma VWF:F8B was reduced to 51. While the homozygous R854Q patients had reduced plasma FVIII levels (mean FVIII=24 IU/dL), none of the sequenced healthy control subjects had plasma FVIII levels below 53 IU/dL, Some have advocated FVIII/VWF:Ag ratios as a screen for type 2N VWD. The subject with homozygous H817Q had only a mildly reduced FVIII/VWF:Ag ratio (0.59), while the heterozygous H817Q were not reduced (mean=0.90), thereby demonstrating that the VWF:F8B assay has greater sensitivity for type 2N VWF binding defects than the FVIII/VWF:Ag ratio. Since the previously reported A1-domain D1472H polymorphism was common in African Americans, we explored the prevalence of this polymorphism in the healthy subjects with the H817Q mutation. All H817Q heterozygous subjects were either homozygous (4) or heterozygous (5) for the D1472H polymorphism. The one individual who was H817Q homozygous was also D1472H homozygous, suggesting that there may be an extended haplotype present in African Americans. In summary, an H817Q type 2N mutation is commonly found in healthy African American subjects with an allele frequency of 0.083, predicting that approximately 7 in 1,000 African Americans would be homozygous for the H817Q type 2N mutation. Our data, and the rarity of diagnosis of type 2N VWD in African Americans suggests that while mutation H817Q may interfere with the interaction of FVIII with VWF, this mutation appears to confer little or no clinical symptoms. Disclosures: No relevant conflicts of interest to declare.


2007 ◽  
Vol 97 (04) ◽  
pp. 527-533 ◽  
Author(s):  
Luigi Marco ◽  
Lisa Gallinaro ◽  
Maryta Sztukowska ◽  
Mario Mazzuccato ◽  
Monica Battiston ◽  
...  

SummaryThe normal von Willebrand factor (vWF) multimer pattern results from the ADAMTS-13 cleavage of the Tyr1605-Met1606 bond in the A2 domain of vWF. We identified a patient with severe von Willebrand disease (vWD) homozygously carrying a Cys to Phe mutation in position 2362 of vWF with markedly altered vWF multimers and an abnormal proteolytic pattern. The proband’s phenotype was characterized by a marked drop in plasma vWF antigen and ristocetin cofactor activity, and a less pronounced decrease in FVIII. The vWF multimers lacked any triplet structure, replaced by single bands with an atypical mobility, surrounded by a smear, and abnormally large vWF multimers. Analysis of the plasma vWF subunit's composition revealed the 225 kDa mature form and a single 205 kDa fragment, but not the 176 kDa and 140 kDa fragments resulting from cleavage by ADAMTS-13.The 205 kDa fragment was distinctly visible, along with the normal vWF cleavage products, in the patient's parents who were heterozygous for the Cys2362Phe mutation. Their vWF levels were mildly decreased and vWF multimers were organized in triplets, but also demonstrated abnormally large forms and smearing. Our findings indicate that a proper conformation of the B2 domain, which depends on critical Cys residues, may be required for the normal proteolytic processing of vWF multimers.


Blood ◽  
2002 ◽  
Vol 99 (1) ◽  
pp. 180-184 ◽  
Author(s):  
Alessandra Casonato ◽  
Elena Pontara ◽  
Francesca Sartorello ◽  
Maria Grazia Cattini ◽  
Maria Teresa Sartori ◽  
...  

Type Vicenza variant of von Willebrand disease (VWD) is characterized by a low plasma von Willebrand factor (VWF) level and supranormal VWF multimers. Two candidate mutations, G2470A and G3864A at exons 17 and 27, respectively, of the VWF gene were recently reported to be present in this disorder. Four additional families, originating from northeast Italy, with both mutations of type Vicenza VWD are now described. Like the original type Vicenza subjects, they showed a mild bleeding tendency and a significant decrease in plasma VWF antigen level and ristocetin cofactor activity but normal platelet VWF content. Unlike the original patients, ristocetin-induced platelet aggregation was found to be normal. Larger than normal VWF multimers were also demonstrated in the plasma. Desmopressin (DDAVP) administration increased factor VIII (FVIII) and VWF plasma levels, with the appearance of even larger multimers. However, these forms, and all VWF oligomers, disappeared rapidly from the circulation. The half-life of VWF antigen release and of elimination was significantly shorter than that in healthy counterparts, so that at 4 hours after DDAVP administration, VWF antigen levels were close to baseline. Similar behavior was demonstrated by VWF ristocetin cofactor activity and FVIII. According to these findings, it is presumed that the low plasma VWF levels of type Vicenza VWD are mainly attributed to reduced survival of the VWF molecule, which, on the other hand, is normally synthesized. In addition, because normal VWF-platelet GPIb interaction was observed before or after DDAVP administration, it is proposed that type Vicenza VWD not be considered a 2M subtype.


Blood ◽  
1991 ◽  
Vol 77 (9) ◽  
pp. 1937-1941
Author(s):  
C Gaucher ◽  
S Jorieux ◽  
B Mercier ◽  
D Oufkir ◽  
C Mazurier

We previously reported a functional defect of von Willebrand factor (vWF) in a new variant of von Willebrand disease (vWD) tentatively named vWD “Normandy.” The present work has attempted to characterize the molecular abnormality of this vWF that fails to bind factor VIII (FVIII). The immunopurified vWF from normal and patient's plasma were digested by trypsin and the resulting peptides were compared. The electrophoresis of ““vWF Normandy” showed a shift in the band corresponding to a polypeptide from amino acid 1 to 272. Consequently, we performed the molecular analysis of the portion of the vWF gene of this patient encoding this amino acid sequence. Exons 18–24 were amplified by the use of polymerase chain reaction and their nucleotide sequences corresponding to 1.8 kb were determined. Our analysis showed a point mutation C to T at codon 791, resulting in the substitution of Methionine for Threonine at position 28 of the mature vWF subunit. Because this nucleotide substitution destroyed a Mae II restriction site, this mutation was conveniently sought in various individual DNAs. The patterns obtained were consistent with the homozygous and heterozygous state of this mutation in the patient and in her son, respectively, and with its absence in 28 normal individuals. We conclude that Threonine at position 28 in plasma vWF may be crucial for the conformation and FVIII-binding capacity of its cystine-rich N- terminal domain.


Sign in / Sign up

Export Citation Format

Share Document